Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Interval Hermite-Obreschkoff Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation

  • Published:
Reliable Computing

Abstract

To date, the only effective approach for computing guaranteed bounds on the solution of an initial value problem (IVP) for an ordinary differential equation (ODE) has been interval methods based on Taylor series. This paper derives a new approach, an interval Hermite-Obreschkoff (IHO) method, for computing such enclosures. Compared to interval Taylor series (ITS) methods, for the same stepsize and order, our IHO scheme has a smaller truncation error, better stability, and requires fewer Taylor coefficients and high-order Jacobians.

The stability properties of the ITS and IHO methods are investigated. We show as an important by-product of this analysis that the stability of an interval method is determined not only by the stability function of the underlying formula, as in a standard method for an IVP for an ODE, but also by the associated formula for the truncation error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, E., Cordes, D., and Lohner, R.: Enclosure of Solutions of Ordinary Initial Value Problems and Applications, in: Adams, E., Ansorge, R., Großmann, Ch., and Roos, H. G. (eds), Discretization in Differential Equations and Enclosures, Akademie-Verlag, Berlin, 1987, pp. 9–28.

    Google Scholar 

  2. Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New York, 1983.

    Google Scholar 

  3. Bendsten, C. and Stauning, O.: FADBAD, a Flexible C++ Package for Automatic Differentiation Using the Forward and Backward Methods, Technical Report 1996-x5-94, Department of Mathematical Modelling, Technical University of Denmark, DK-2800, Lyngby, Denmark, 1996. FADBAD is available at http://www.imm.dtu.dk/fadbad.html.

    Google Scholar 

  4. Bendsten, C. and Stauning, O.: TADIFF, a Flexible C++ Package for Automatic Differentiation Using Taylor Series, Technical Report 1997-x5-94, Department of Mathematical Modelling, Technical University of Denmark, DK-2800, Lyngby, Denmark, 1997. TADIFF is available at http://www.imm.dtu.dk/fadbad.html.

    Google Scholar 

  5. Birkhoff, G. and Varga, R. S.: Discretization Errors for Well-Set Cauchy Problems: I, J. Math. and Phys. 44 (1965), pp. 1–23.

    Google Scholar 

  6. Corliss, G. F. and Rihm, R.: Validating an A Priori Enclosure Using High-Order Taylor Series, in: Alefeld, G. and Frommer, A. (eds), Scientific Computing, Computer Arithmetic, and Validated Numerics, Akademie Verlag, Berlin, 1996, pp. 228–238.

    Google Scholar 

  7. Darboux, G.: Sur les dèveloppements en série des fonctions d'une seule variable, J. des Mathématique pures et appl., 3ème série, t. II, 1987, pp. 291–312.

    Google Scholar 

  8. Ehle, B. L.: On Padé Approximations to the Exponential Function and A-Stable Methods for the Numerical Solution of Initial Value Problems, SIAM J. Math. Anal. 4 (1973), pp. 671–680.

    Google Scholar 

  9. Eijgenraam, P.: The Solution of Initial Value Problems Using Interval Arithmetic, Mathematical Centre Tracts No. 144, Stichting Mathematisch Centrum, Amsterdam, 1981.

    Google Scholar 

  10. Enright, W. H., Hull, T. E., and Lindberg, B.: Comparing Numerical Methods for Stiff Systems of ODEs, BIT 15 (1975), pp. 10–48.

    Google Scholar 

  11. Griewank, A.: ODE Solving via Automatic Differentiation and Rational Prediction, in: Griffiths, D. F. and Watson, G. A. (eds), Numerical Analysis 1995, volume 344 of Pitman Research Notes in Mathematics Series, Addison-Wesley Longman Ltd, 1995.

  12. Griewank, A., Corliss, G. F., Henneberger, P., Kirlinger, G., Potra, F. A., and Stetter, H. J.: High-Order Stiff ODE Solvers via Automatic Differentiation and Rational Prediction, in: Lecture Notes in Comput. Sci. 1196, Springer, Berlin, 1997, pp. 114–125.

    Google Scholar 

  13. Griewank, A., Juedes, D., and Utke, J.: ADOL-C, a Package for the Automatic Differentiation of Algorithms Written in C/C++, ACM Trans. Math. Software 22(2) (1996), pp. 131–167.

    Google Scholar 

  14. Hairer, E., Nørsett, S. P., and Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems, Springer-Verlag, 2nd revised edition, 1991.

  15. Hermite, Ch.: Extrait d'une lettre de M. Ch. Hermite à M. Borchardt sur la formule d'interpolation de Lagrange, J. de Crelle 84(70) (1878), Oeuvres, tome III, pp. 432–443.

    Google Scholar 

  16. Van Iwaarden, R.: IADOL-C, personal communications, 1997.

  17. Knüppel, O.: PROFIL/BIAS—a Fast Interval Library, Computing 53(3–4) (1994), pp. 277–287. PROFIL/BIAS is available at http://www.ti3.tu-harburg.de/Software/PROFIL/Profil.texinfo-l.html.

    Google Scholar 

  18. Krückeberg, F.: Ordinary Differential Equations, in: Hansen, E. (ed.), Topics in Interval Analysis, Clarendon Press, Oxford, 1969, pp. 91–97.

    Google Scholar 

  19. Lambert, J. D.: Computational Methods in Ordinary Differential Equations, John Wiley & Sons, 1977.

  20. Lohner, R. J.: Einschließung der Lösung gewöhnlicher Anfangs-und Randwertaufgaben und Anwendungen, PhD thesis, Universität Karlsruhe, 1988.

  21. Lohner, R. J.: Enclosing the Solutions of Ordinary Initial and Boundary Value Problems, in: Kaucher, E. W., Kulisch, U. W., and Ullrich, Ch. (eds), Computer Arithmetic: Scientific Computation and Programming Languages, Wiley-Teubner Series in Computer Science, Stuttgart, 1987, pp. 255–286.

    Google Scholar 

  22. Moore, R. E.: Automatic Local Coordinate Transformation to Reduce the Growth of Error Bounds in Interval Computation of Solutions of Ordinary Differential Equations, in: Rall, L. B. (ed.), Error in Digital Computation, Vol. II, Wiley, New York, 1965, pp. 103–140.

    Google Scholar 

  23. Moore, R. E.: Interval Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1966.

    Google Scholar 

  24. Moore, R. E.: The Automatic Analysis and Control of Error in Digital Computation Based on the Use of Interval Numbers, in: Rall, L. B. (ed.), Error in Digital Computation, Vol. I, Wiley, New York, 1965, pp. 61–130.

    Google Scholar 

  25. Nedialkov, N. S., Jackson, K. R., and Corliss, G. F.: Validated Solutions of Initial Value Problems for Ordinary Differential Equations, Applied Mathematics and Computation, to appear. Available at http://www.cs.toronto.edu/NA/reports.html.

  26. Nedialkov, N. S.: Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation, PhD thesis, Department of Computer Science, University of Toronto, Toronto, Canada, M5S 3G4. Aailable at http://www.cs.toronto.edu/NA/reports.html.

  27. Obreschkoff, N.: Neue Quadraturformeln, Abh. Preuss. Akad. Wiss. Math. Nat. Kl. 4 (1940).

  28. Obreschkoff, N.: Sur le quadrature mecaniques, Spisanie Bulgar. Akad. Nauk (Journal of the Bulgarian Academy of Sciences) 65 (1942), pp. 191–289.

    Google Scholar 

  29. Ralston, A.: A First Course in Numerical Analysis, McGraw-Hill, New York, 2nd edition, 1978.

    Google Scholar 

  30. Rihm, R.: On a Class of Enclosure Methods for Initial Value Problems, Computing 53 (1994), pp. 369–377.

    Google Scholar 

  31. Rohn, J.: NP-Hardness Results for Linear Algebraic Problems with Interval Data, in: Herzberger, J. (ed.), Topics in Validated Computations, volume 5 of Studies in Computational Mathematics, North-Holland, Amsterdam, 1994, pp. 463–471.

    Google Scholar 

  32. Stauning, O.: Automatic Validation of Numerical Solutions, Technical Report IMM-PHD-1997-36, IMM, Lyngby, Denmark, 1997.

    Google Scholar 

  33. Varga, R. S.: On Higher Order Stable Implicit Methods for Solving Parabolic Differential Equations, J. Math. and Phys. 40 (1961), pp. 220–231.

    Google Scholar 

  34. Wanner, G.: On the Integration of Stiff Differential Equations, Technical report, Université de Genéve, Section de Mathematique, 1211 Genéve 24th, Suisse, 1976.

    Google Scholar 

  35. Wanner, G.: On the Integration of Stiff Differential Equations, in: Proceedings of the Colloquium on Numerical Analysis, volume 37 of Internat. Ser. Numer. Math., Basel, Birkhäuser, 1977, pp. 209–226.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedialkov, N.S., Jackson, K.R. An Interval Hermite-Obreschkoff Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation. Reliable Computing 5, 289–310 (1999). https://doi.org/10.1023/A:1009936607335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009936607335

Keywords