Abstract
The problem of finding an enclosure for the range of a bivariate polynomial p over the unit triangle is considered. The polynomial p is expanded into Bernstein polynomials. If p has only real coefficients the coefficients of this expansion, the so-called Bernstein coefficients, provide lower and upper bounds for the range. In the case that p has complex coefficients the convex hull of the Bernstein coefficients encloses the range. The enclosure is improved by subdividing the unit triangle into squares and triangles and computing enclosures for the range of p over these regions. It is shown that the sequence of enclosures obtained in this way converges to the convex hull of the range in the Hausdorff distance. Furthermore, it is described how the Bernstein coefficients on these regions can be computed economically.
Similar content being viewed by others
References
Boltyanskii, V. G.: Equivalent and Equidecomposable Figures, D.C. Heath and Comp., Boston, 1963.
Cargo, G. T. and Shisha, O.: The Bernstein Form of a Polynomial, J. Res. Nat. Bur. Standards Section B 70B (1966), pp. 79-81.
Epstein, C., Miranker, W. L., and Rivlin, T. J.: Ultra-Arithmetic II: Intervals of Polynomials, Mathematics and Computers in Simulation 24 (1982), pp. 19-29.
Fischer, H. C.: Range Computations and Applications, in: Ullrich, C. (ed.), Contributions to Computer Arithmetic and Self-Validating Numerical Methods, J.C. Baltzer, Amsterdam, 1990, pp. 197-211.
Garloff, J.: Convergent Bounds for the Range of Multivariate Polynomials, in: Nickel, K. (ed.), Interval Mathematics 1985, Lecture Notes in Computer Science 212, Springer, Berlin, 1986, pp. 37-56.
Garloff, J.: The Bernstein Algorithm, Interval Computations 2 (1993), pp. 154-168.
Garloff, J., Graf, B., and Zettler, M.: Speeding up an Algorithm for Checking Robust Stability of Polynomials, in: Bányász, Cs. (ed.), Robust Control Design, Pergamon, 1997, pp. 205-210.
Goodman, T. N. T.: Variation Diminishing Properties of Bernstein Polynomials on Triangles, J. Approximation Theory 50 (1987), pp. 111-126.
Gopolsamy, S., Khandekar, D., and Mudur, S. P.: A New Method of Evaluating Compact Geometric Bounds for Use in Subdivision Algorithms, Computer Aided Geometric Design 8 (1991), pp. 337-356.
Grassmann, E. and Rokne, J.: The Range of Values of a Circular Complex Polynomial over a Circular Complex Interval, Computing 23 (1979), pp. 139-169.
Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin, 1957.
Hong, H. and Stahl, V.: Bernstein Form Is Inclusion Monotone, Computing 55 (1995), pp. 43-53.
Hu, Chun-Yi, Patrikalakis, N. M., and Ye, Xiuzi: Robust Interval Solid Modelling, Part I: Representations, Computer-Aided Design 28 (1996), pp. 807-817.
Hungerbühler, R.: Diploma Thesis, Fakultät für Mathematik und Informatik, Universität Konstanz, 1997 (in German).
Lane, J. M. and Riesenfeld, R. F.: A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces, IEEE Trans. Pattern Anal. Machine Intelligence 2 (1980), pp. 35-46.
Lane, J. M. and Riesenfeld, R. F.: Bounds on a Polynomial, BIT 21 (1981), pp. 112-117.
Lin, Qun and Rokne, J. G.: A Family of Centered Forms for a Polynomial, BIT 32 (1992), pp. 167-176.
Lorentz, G. G.: Bernstein Polynomials, Univ. Toronto Press, Toronto, 1953.
Malan, S., Milanese, M., Taragna, M., and Garloff, J.: B 3 Algorithm for Robust Performances Analysis in Presence of Mixed Parametric and Dynamic Perturbations, in: Proc. 31st Conf. Decision and Control, Tucson, Arizona, 1992, pp. 128-133.
Rjordan, R.: Combinatorial Identities, Wiley and Sons, New York, 1968, p. 8 and p. 12.
Rivlin, T. J.: Bounds on a Polynomial, J. Res. Nat. Bur. Standards Section B 74B (1970), pp. 47-54.
Roguet, C. and Garloff, J.: Computational Experiences with the Bernstein Algorithm, Tech. Rep. No. 9403, Fachhochschule Konstanz, Fachbereich Informatik, 1994.
Rokne, J.: Bounds for an Interval Polynomial, Computing 18 (1977), pp. 225-240.
Rokne, J.: A Note on the Bernstein Algorithm for Bounds for Interval Polynomials, Computing 21 (1979), pp. 159-170.
Rokne, J.: The Range of Values of a Complex Polynomial over a Complex Interval, Computing 22 (1979), pp. 153-169.
Rokne, J.: Optimal Computation of the Bernstein Algorithm for the Bound of an Interval Polynomial, Computing 28 (1982), pp. 239-246.
Sederberg, T. W. and Farouki, R. T.: Approximation by Interval Bezier Curves, IEEE Trans. Comp. Graphics & Applications 12 (1992), pp. 87-95.
Zettler, M.: Subdivision and Degree Elevation for Bernstein Polynomials, diploma thesis, Fachhochschule Konstanz, Fachbereich Informatik, 1991 (in German).
Zettler, M. and Garloff, J.: Robustness Analysis of Polynomials with Polynomial Parameter Dependency Using Bernstein Expansion, in: IEEE Trans. Automatic Control (1997), to appear.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hungerbühler, R., Garloff, J. Bounds for the Range of a Bivariate Polynomial over a Triangle. Reliable Computing 4, 3–13 (1998). https://doi.org/10.1023/A:1009942430877
Issue Date:
DOI: https://doi.org/10.1023/A:1009942430877