Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bounds for the Range of a Bivariate Polynomial over a Triangle

  • Published:
Reliable Computing

Abstract

The problem of finding an enclosure for the range of a bivariate polynomial p over the unit triangle is considered. The polynomial p is expanded into Bernstein polynomials. If p has only real coefficients the coefficients of this expansion, the so-called Bernstein coefficients, provide lower and upper bounds for the range. In the case that p has complex coefficients the convex hull of the Bernstein coefficients encloses the range. The enclosure is improved by subdividing the unit triangle into squares and triangles and computing enclosures for the range of p over these regions. It is shown that the sequence of enclosures obtained in this way converges to the convex hull of the range in the Hausdorff distance. Furthermore, it is described how the Bernstein coefficients on these regions can be computed economically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boltyanskii, V. G.: Equivalent and Equidecomposable Figures, D.C. Heath and Comp., Boston, 1963.

    Google Scholar 

  2. Cargo, G. T. and Shisha, O.: The Bernstein Form of a Polynomial, J. Res. Nat. Bur. Standards Section B 70B (1966), pp. 79-81.

    Google Scholar 

  3. Epstein, C., Miranker, W. L., and Rivlin, T. J.: Ultra-Arithmetic II: Intervals of Polynomials, Mathematics and Computers in Simulation 24 (1982), pp. 19-29.

    Google Scholar 

  4. Fischer, H. C.: Range Computations and Applications, in: Ullrich, C. (ed.), Contributions to Computer Arithmetic and Self-Validating Numerical Methods, J.C. Baltzer, Amsterdam, 1990, pp. 197-211.

    Google Scholar 

  5. Garloff, J.: Convergent Bounds for the Range of Multivariate Polynomials, in: Nickel, K. (ed.), Interval Mathematics 1985, Lecture Notes in Computer Science 212, Springer, Berlin, 1986, pp. 37-56.

    Google Scholar 

  6. Garloff, J.: The Bernstein Algorithm, Interval Computations 2 (1993), pp. 154-168.

    Google Scholar 

  7. Garloff, J., Graf, B., and Zettler, M.: Speeding up an Algorithm for Checking Robust Stability of Polynomials, in: Bányász, Cs. (ed.), Robust Control Design, Pergamon, 1997, pp. 205-210.

  8. Goodman, T. N. T.: Variation Diminishing Properties of Bernstein Polynomials on Triangles, J. Approximation Theory 50 (1987), pp. 111-126.

    Google Scholar 

  9. Gopolsamy, S., Khandekar, D., and Mudur, S. P.: A New Method of Evaluating Compact Geometric Bounds for Use in Subdivision Algorithms, Computer Aided Geometric Design 8 (1991), pp. 337-356.

    Google Scholar 

  10. Grassmann, E. and Rokne, J.: The Range of Values of a Circular Complex Polynomial over a Circular Complex Interval, Computing 23 (1979), pp. 139-169.

    Google Scholar 

  11. Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin, 1957.

    Google Scholar 

  12. Hong, H. and Stahl, V.: Bernstein Form Is Inclusion Monotone, Computing 55 (1995), pp. 43-53.

    Google Scholar 

  13. Hu, Chun-Yi, Patrikalakis, N. M., and Ye, Xiuzi: Robust Interval Solid Modelling, Part I: Representations, Computer-Aided Design 28 (1996), pp. 807-817.

    Google Scholar 

  14. Hungerbühler, R.: Diploma Thesis, Fakultät für Mathematik und Informatik, Universität Konstanz, 1997 (in German).

  15. Lane, J. M. and Riesenfeld, R. F.: A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces, IEEE Trans. Pattern Anal. Machine Intelligence 2 (1980), pp. 35-46.

    Google Scholar 

  16. Lane, J. M. and Riesenfeld, R. F.: Bounds on a Polynomial, BIT 21 (1981), pp. 112-117.

    Google Scholar 

  17. Lin, Qun and Rokne, J. G.: A Family of Centered Forms for a Polynomial, BIT 32 (1992), pp. 167-176.

    Google Scholar 

  18. Lorentz, G. G.: Bernstein Polynomials, Univ. Toronto Press, Toronto, 1953.

    Google Scholar 

  19. Malan, S., Milanese, M., Taragna, M., and Garloff, J.: B 3 Algorithm for Robust Performances Analysis in Presence of Mixed Parametric and Dynamic Perturbations, in: Proc. 31st Conf. Decision and Control, Tucson, Arizona, 1992, pp. 128-133.

  20. Rjordan, R.: Combinatorial Identities, Wiley and Sons, New York, 1968, p. 8 and p. 12.

    Google Scholar 

  21. Rivlin, T. J.: Bounds on a Polynomial, J. Res. Nat. Bur. Standards Section B 74B (1970), pp. 47-54.

    Google Scholar 

  22. Roguet, C. and Garloff, J.: Computational Experiences with the Bernstein Algorithm, Tech. Rep. No. 9403, Fachhochschule Konstanz, Fachbereich Informatik, 1994.

    Google Scholar 

  23. Rokne, J.: Bounds for an Interval Polynomial, Computing 18 (1977), pp. 225-240.

    Google Scholar 

  24. Rokne, J.: A Note on the Bernstein Algorithm for Bounds for Interval Polynomials, Computing 21 (1979), pp. 159-170.

    Google Scholar 

  25. Rokne, J.: The Range of Values of a Complex Polynomial over a Complex Interval, Computing 22 (1979), pp. 153-169.

    Google Scholar 

  26. Rokne, J.: Optimal Computation of the Bernstein Algorithm for the Bound of an Interval Polynomial, Computing 28 (1982), pp. 239-246.

    Google Scholar 

  27. Sederberg, T. W. and Farouki, R. T.: Approximation by Interval Bezier Curves, IEEE Trans. Comp. Graphics & Applications 12 (1992), pp. 87-95.

    Google Scholar 

  28. Zettler, M.: Subdivision and Degree Elevation for Bernstein Polynomials, diploma thesis, Fachhochschule Konstanz, Fachbereich Informatik, 1991 (in German).

    Google Scholar 

  29. Zettler, M. and Garloff, J.: Robustness Analysis of Polynomials with Polynomial Parameter Dependency Using Bernstein Expansion, in: IEEE Trans. Automatic Control (1997), to appear.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hungerbühler, R., Garloff, J. Bounds for the Range of a Bivariate Polynomial over a Triangle. Reliable Computing 4, 3–13 (1998). https://doi.org/10.1023/A:1009942430877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009942430877

Keywords