Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Applicability of the Interval Gaussian Algorithm

  • Published:
Reliable Computing

Abstract

We consider a linear interval system with a regular n × n interval matrix [A] which has the form [A] = I + [-R,R]. For such a system we prove necessary and sufficient conditions for the applicability of the interval Gaussian algorithm where applicability means that the algorithm does not break down by dividing by an interval which contains zero. If this applicability is guaranteed we compare the output vector [x]G with the interval hull of the solution set \(S = \tilde x\left\{ {\left| {\exists \tilde A \in \left[ A \right]\tilde b \in \left[ b \right]} \right.:\tilde A\tilde x = \tilde b} \right\}\). In particular, we show that in each entry of [x]G at least one of the two bounds is optimal. Linear interval systems of the above-mentioned form arise when a given general system is preconditioned with the midpoint inverse of the underlying coefficient matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld, G.: Über die Durchführbarkeit des Gaußschen Algorithmus bei Gleichungen mit Intervallen als Koeffizienten, Computing Suppl. 1 (1977), pp. 15–19.

    Google Scholar 

  2. Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New York, 1983.

    Google Scholar 

  3. Barth, W. and Nuding, E.: Optimale Lösung von Intervallgleichungssystemen, Computing 12 (1974), pp. 117–125.

    Google Scholar 

  4. Beeck, H.: Zur scharfen Außenabschätzung der Lösungsmenge bei linearen Intervallgleichungssystemen, Z. Angew. Math. Mech. 54 (1974), pp. T208–T209.

    Google Scholar 

  5. Fan, K.: Topological Proof for Certain Theorems on Matrices with Non-Negative Elements, Monatsh. Math. 62 (1958), pp. 219–237.

    Google Scholar 

  6. Frommer, A. and Mayer, G.: A New Criterion to Guarantee the Feasibility of the Interval Gaussian Algorithm, SIAM J. Matrix Anal. Appl. 14 (1993), pp. 408–419.

    Google Scholar 

  7. Frommer, A. and Mayer, G.: Linear Systems with Ω-diagonally Dominant Matrices and Related Ones, Linear Algebra Appl. 186 (1993), pp. 165–181.

    Google Scholar 

  8. Golub, H. G. and van Loan, C. F.: Matrix Computations. Third Edition, The Johns Hopkins University Press, Baltimore, 1996.

    Google Scholar 

  9. Hansen, E. R.: Bounding the Solution of Linear Interval Equations, SIAM J. Numer. Anal. 29 (1992), pp. 1493–1503.

    Google Scholar 

  10. Hansen, E. R.: Gaussian Elimination in Interval Systems, Preprint, 1997.

  11. Mayer, G.: Old and New Aspects of the Interval Gaussian Algorithm, in: Kaucher, E., Markov, S. M., and Mayer, G. (eds), Computer Arithmetic, Scientific Computation and Mathematical Modelling. IMACS Annals on Computing and Applied Mathematics 12, Baltzer, Basel, 1991, pp. 329–349.

    Google Scholar 

  12. Mayer, G. and Pieper, L.: A Necessary and Sufficient Criterion to Guarantee the Feasibility of the Interval Gaussian Algorithm for Some Class of Matrices, Appl. Math. 38 (1993), pp. 205–220.

    Google Scholar 

  13. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  14. Neumaier, A.: The Wrapping Effect, Ellipsoid Arithmetic, Stability and Confidence Regions. in: Albrecht, R., Alefeld, G., and Stetter, H. J. (eds): Validation Numerics. Theory and Applications. Computing Supplementum 9 (1993), pp. 175–190.

  15. Neumaier, A.: Personal Communication, 1997.

  16. Ning, S. and Kearfott, R. B.: A Comparison of Some Methods for Solving Linear Interval Equations, SIAM J. Numer. Anal. 34 (1997), pp. 1289–1305.

    Google Scholar 

  17. Rohn, J.: Systems of Linear Interval Equations, Linear Algebra Appl. 126 (1989), pp. 39–78.

    Google Scholar 

  18. Rohn, J.: Cheap and Tight Bounds: The Recent Result by E. Hansen Can Be Made More Efficient, Interval Computations 4 (1993), pp. 13–21.

    Google Scholar 

  19. Rohn, J.: On Overestimations Produced by the Interval Gaussian Algorithm, Reliable Computing 3(4) (1997), pp. 363–368.

    Google Scholar 

  20. Rump, S. M.: Validated Solution of Large Linear Systems, in: Albrecht, R., Alefeld, G., and Stetter, H. J. (eds): Validation Numerics. Theory and Applications. Computing Supplementum 9 (1993), pp. 191–212.

  21. Varga, R. S.: Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, G., Rohn, J. On the Applicability of the Interval Gaussian Algorithm. Reliable Computing 4, 205–222 (1998). https://doi.org/10.1023/A:1009997411503

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009997411503

Keywords