Abstract
In this paper we investigate the stability of a class of two-station multiclass fluid networks with proportional routing. We obtain explicit necessary and sufficient conditions for the global stability of such networks. By virtue of a stability theorem of Dai [14], these results also give sufficient conditions for the stability of a class of related multiclass queueing networks. Our study extends the results of Dai and VandeVate [19], who provided a similar analysis for fluid models without proportional routing, which arise from queueing networks with deterministic routing. The models we investigate include fluid models which arise from a large class of two-station queueing networks with probabilistic routing. The stability conditions derived turn out to have an appealing intuitive interpretation in terms of virtual stations and push-starts which were introduced in earlier work on multiclass networks.
Similar content being viewed by others
References
¡R.K.¡ Ahuja,¡ T.K.¡ Magnanti¡and¡ J.B.¡ Orlin,¡Network¡Flows:¡Theory,¡Algorithms,¡and¡Applications¡(Prentice-Hall,¡ Englewood¡Cliffs,¡NJ,¡1993).
¡D.¡ Bertsimas,¡Lecture¡Notes¡on¡Stability¡of¡Multiclass¡Queueing¡Networks¡(1996).
¡D.¡ Bertsimas,¡ D.¡ Gamarnik¡and¡ J.N.¡ Tsitsiklis,¡Stability¡conditions¡for¡multiclass¡fluid¡queueing¡networks,¡IEEE¡Trans.¡Automat.¡Control¡41(11)¡(1996).
¡D.¡ Bertsimas,¡ D.¡ Gamarnik¡and¡ J.N.¡ Tsitsiklis,¡Performance¡of¡multiclass¡Markovian¡queueing¡networks¡via¡piecewise¡linear¡Lyapunov¡functions,¡Ann.¡Appl.¡Probab.¡(2001),¡to¡appear.
¡M.¡ Bramson,¡Instability¡of¡FIFO¡queueing¡networks,¡Ann.¡Appl.¡Probab.¡4¡(1994)¡414-431.
¡M.¡ Bramson,¡Convergence¡to¡equilibria¡for¡fluid¡models¡of¡FIFO¡queueing¡networks,¡Queueing¡Systems¡22¡(1996)¡5-45.
¡M.¡ Bramson,¡Convergence¡to¡equilibria¡for¡fluid¡models¡of¡head-of-the-line¡proportional¡processor¡sharing¡queueing¡networks,¡Queueing¡Systems¡23¡(1996)¡1-26.
¡M.¡ Bramson,¡A¡stable¡queueing¡network¡with¡unstable¡fluid¡model,¡Ann.¡Appl.¡Probab.¡9(3)¡(1999)¡818-853.
¡H.¡ Chen,¡Fluid¡approximations¡and¡stability¡of¡multiclass¡queueing¡networks¡I:¡Work-conserving¡disciplines,¡Ann.¡Appl.¡Probab.¡5¡(1995)¡637-665.
¡H.¡ Chen¡and¡ D.¡ Yao,¡Stable¡priority¡disciplines¡for¡multiclass¡networks,¡in:¡Proc.¡of¡Workshop¡on¡Stochastic¡Networks:¡Stability¡and¡Rare¡Events,¡eds.¡K.S.¡ Paul¡Glasserman¡and¡ D.¡ Yao,¡Columbia¡University¡(Springer,¡ New¡York,¡1996).
¡H.¡ Chen¡and¡ H.¡ Zhang,¡Stability¡of¡multiclass¡queueing¡networks¡under¡FIFO¡service¡discipline,¡Math.¡Oper.¡Res.¡22¡(1997)¡691-725.
¡H.¡ Chen¡and¡ H.¡ Zhang,¡Stability¡of¡multiclass¡queueing¡networks¡under¡priority¡service¡disciplines,¡Oper.¡Res.¡48¡(2000)¡26-37.
¡J.G.¡ Dai,¡On¡positive¡Harris¡recurrence¡of¡multiclass¡queueing¡networks:¡A¡unified¡approach¡via¡fluid¡limit¡models,¡Ann.¡Appl.¡Probab.¡5¡(1995)¡49-77.
¡J.G.¡ Dai,¡A¡fluid-limit¡model¡criterion¡for¡instability¡of¡multiclass¡queueing¡networks,¡Ann.¡Appl.¡Probab.¡6¡(1996)¡751-757.
¡J.G.¡ Dai,¡ J.J.¡Hasenbein¡and¡ J.H.¡ VandeVate,¡Stability¡gap¡between¡fluid¡and¡queueing¡networks,¡in:¡Conf.¡on¡Stochastic¡Networks,¡19-30¡June¡2000,¡Madison,¡ WI.
¡J.G.¡ Dai,¡ J.J.¡Hasenbein¡and¡ J.H.¡ VandeVate,¡Stability¡of¡a¡three-station¡fluid¡network,¡Queueing¡Systems¡33¡(1999)¡293-325.
¡J.G.¡ Dai¡and¡ C.¡ Li,¡Stabilizing¡batch¡processing¡networks,¡Oper.¡Res.¡(2001),¡submitted.
¡J.G.¡ Dai¡and¡ J.¡ VandeVate,¡Global¡stability¡of¡two-station¡queueing¡networks,¡in:¡Proc.¡of¡Workshop¡on¡Stochastic¡Networks:¡Stability¡and¡Rare¡Events,¡eds.¡K.S.¡ Paul¡Glasserman¡and¡ D.¡ Yao,¡Columbia¡University¡(Springer,¡ New¡York,¡1996)¡pp.¡1-26.
¡J.G.¡ Dai¡and¡ J.¡ VandeVate,¡The¡stability¡of¡two-station¡multitype¡fluid¡networks,¡Oper.¡Res.¡48¡(2000)¡721-744.
¡J.G.¡ Dai¡and¡ G.¡ Weiss,¡Stability¡and¡instability¡of¡fluid¡models¡for¡re-entrant¡lines,¡Math.¡Oper.¡Res.¡21¡(1996)¡115-134.
¡V.¡ Dumas,¡A¡multiclass¡network¡with¡non-linear,¡non-convex,¡non-monotonic¡stability¡conditions,¡Queueing¡Systems¡25¡(1997)¡1-43.
¡J.J.¡ Hasenbein,¡Necessary¡conditions¡for¡global¡stability¡of¡multiclass¡queueing¡networks,¡Oper.¡Res.¡Lett.¡21¡(1997)¡87-94.
¡J.R.¡ Jackson,¡Networks¡of¡waiting¡lines,¡Oper.¡Res.¡5¡(1957)¡518-521.
¡O.B.¡ Jennings,¡Generalized¡round-robin¡service¡disciplines¡in¡stochastic¡networks¡with¡setup:¡Stability¡analysis¡and¡diffusion¡approximation,¡Ph.D.¡thesis,¡School¡of¡Industrial¡and¡Systems¡Engineering,¡Georgia¡Institute¡of¡Technology¡(March¡2000).
¡F.P.¡ Kelly,¡Networks¡of¡queues¡with¡customers¡of¡different¡types,¡J.¡Appl.¡Probab.¡12¡(1975)¡542-554.
¡P.R.¡ Kumar,¡Re-entrant¡lines,¡Queueing¡Systems¡13¡(1993)¡87-110.
¡P.R.¡ Kumar¡and¡ T.I.¡ Seidman,¡Dynamic¡instabilities¡and¡stabilization¡methods¡in¡distributed¡real-time¡scheduling¡of¡manufacturing¡systems,¡IEEE¡Trans.¡Automat.¡Control¡35¡(1990)¡289-298.
¡S.¡ Kumar¡and¡ P.R.¡ Kumar,¡Fluctuation¡smoothing¡policies¡are¡stable¡for¡stochastic¡reentrant¡lines,¡Discrete¡Event¡Dyn.¡Systems¡6¡(1996)¡361-370.
¡S.H.¡ Lu¡and¡ P.R.¡ Kumar,¡Distributed¡scheduling¡based¡on¡due¡dates¡and¡buffer¡priorities,¡IEEE¡Trans.¡Automat.¡Control¡36¡(1991)¡1406-1416.
¡S.P.¡ Meyn,¡Transience¡of¡multiclass¡queueing¡networks¡via¡fluid¡limit¡models,¡Ann.¡Appl.¡Probab.¡5¡(1995)¡946-957.
¡A.N.¡ Rybko¡and¡ A.L.¡ Stolyar,¡Ergodicity¡of¡stochastic¡processes¡describing¡the¡operation¡of¡open¡queueing¡networks,¡Problems¡Inform.¡Transmission¡28¡(1992)¡199-220.
¡T.I.¡ Seidman,¡'First¡come,¡first¡served'¡can¡be¡unstable!,¡IEEE¡Trans.¡Automat.¡Control¡39¡(1994)¡2166-2171.
¡A.¡ Stolyar,¡On¡the¡stability¡of¡multiclass¡queueing¡networks:¡a¡relaxed¡sufficient¡condition¡via¡limiting¡fluid¡processes,¡in:¡Markov¡Processes¡and¡Related¡Fields¡(1995)¡pp.¡491-512.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hasenbein, J.J. Stability of Fluid Networks with Proportional Routing. Queueing Systems 38, 327–354 (2001). https://doi.org/10.1023/A:1010959706486
Issue Date:
DOI: https://doi.org/10.1023/A:1010959706486