Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stability of Fluid Networks with Proportional Routing

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

In this paper we investigate the stability of a class of two-station multiclass fluid networks with proportional routing. We obtain explicit necessary and sufficient conditions for the global stability of such networks. By virtue of a stability theorem of Dai [14], these results also give sufficient conditions for the stability of a class of related multiclass queueing networks. Our study extends the results of Dai and VandeVate [19], who provided a similar analysis for fluid models without proportional routing, which arise from queueing networks with deterministic routing. The models we investigate include fluid models which arise from a large class of two-station queueing networks with probabilistic routing. The stability conditions derived turn out to have an appealing intuitive interpretation in terms of virtual stations and push-starts which were introduced in earlier work on multiclass networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ¡R.K.¡ Ahuja,¡ T.K.¡ Magnanti¡and¡ J.B.¡ Orlin,¡Network¡Flows:¡Theory,¡Algorithms,¡and¡Applications¡(Prentice-Hall,¡ Englewood¡Cliffs,¡NJ,¡1993).

  2. ¡D.¡ Bertsimas,¡Lecture¡Notes¡on¡Stability¡of¡Multiclass¡Queueing¡Networks¡(1996).

  3. ¡D.¡ Bertsimas,¡ D.¡ Gamarnik¡and¡ J.N.¡ Tsitsiklis,¡Stability¡conditions¡for¡multiclass¡fluid¡queueing¡networks,¡IEEE¡Trans.¡Automat.¡Control¡41(11)¡(1996).

  4. ¡D.¡ Bertsimas,¡ D.¡ Gamarnik¡and¡ J.N.¡ Tsitsiklis,¡Performance¡of¡multiclass¡Markovian¡queueing¡networks¡via¡piecewise¡linear¡Lyapunov¡functions,¡Ann.¡Appl.¡Probab.¡(2001),¡to¡appear.

  5. ¡M.¡ Bramson,¡Instability¡of¡FIFO¡queueing¡networks,¡Ann.¡Appl.¡Probab.¡4¡(1994)¡414-431.

  6. ¡M.¡ Bramson,¡Convergence¡to¡equilibria¡for¡fluid¡models¡of¡FIFO¡queueing¡networks,¡Queueing¡Systems¡22¡(1996)¡5-45.

  7. ¡M.¡ Bramson,¡Convergence¡to¡equilibria¡for¡fluid¡models¡of¡head-of-the-line¡proportional¡processor¡sharing¡queueing¡networks,¡Queueing¡Systems¡23¡(1996)¡1-26.

  8. ¡M.¡ Bramson,¡A¡stable¡queueing¡network¡with¡unstable¡fluid¡model,¡Ann.¡Appl.¡Probab.¡9(3)¡(1999)¡818-853.

  9. ¡H.¡ Chen,¡Fluid¡approximations¡and¡stability¡of¡multiclass¡queueing¡networks¡I:¡Work-conserving¡disciplines,¡Ann.¡Appl.¡Probab.¡5¡(1995)¡637-665.

  10. ¡H.¡ Chen¡and¡ D.¡ Yao,¡Stable¡priority¡disciplines¡for¡multiclass¡networks,¡in:¡Proc.¡of¡Workshop¡on¡Stochastic¡Networks:¡Stability¡and¡Rare¡Events,¡eds.¡K.S.¡ Paul¡Glasserman¡and¡ D.¡ Yao,¡Columbia¡University¡(Springer,¡ New¡York,¡1996).

  11. ¡H.¡ Chen¡and¡ H.¡ Zhang,¡Stability¡of¡multiclass¡queueing¡networks¡under¡FIFO¡service¡discipline,¡Math.¡Oper.¡Res.¡22¡(1997)¡691-725.

  12. ¡H.¡ Chen¡and¡ H.¡ Zhang,¡Stability¡of¡multiclass¡queueing¡networks¡under¡priority¡service¡disciplines,¡Oper.¡Res.¡48¡(2000)¡26-37.

  13. ¡J.G.¡ Dai,¡On¡positive¡Harris¡recurrence¡of¡multiclass¡queueing¡networks:¡A¡unified¡approach¡via¡fluid¡limit¡models,¡Ann.¡Appl.¡Probab.¡5¡(1995)¡49-77.

  14. ¡J.G.¡ Dai,¡A¡fluid-limit¡model¡criterion¡for¡instability¡of¡multiclass¡queueing¡networks,¡Ann.¡Appl.¡Probab.¡6¡(1996)¡751-757.

  15. ¡J.G.¡ Dai,¡ J.J.¡Hasenbein¡and¡ J.H.¡ VandeVate,¡Stability¡gap¡between¡fluid¡and¡queueing¡networks,¡in:¡Conf.¡on¡Stochastic¡Networks,¡19-30¡June¡2000,¡Madison,¡ WI.

  16. ¡J.G.¡ Dai,¡ J.J.¡Hasenbein¡and¡ J.H.¡ VandeVate,¡Stability¡of¡a¡three-station¡fluid¡network,¡Queueing¡Systems¡33¡(1999)¡293-325.

  17. ¡J.G.¡ Dai¡and¡ C.¡ Li,¡Stabilizing¡batch¡processing¡networks,¡Oper.¡Res.¡(2001),¡submitted.

  18. ¡J.G.¡ Dai¡and¡ J.¡ VandeVate,¡Global¡stability¡of¡two-station¡queueing¡networks,¡in:¡Proc.¡of¡Workshop¡on¡Stochastic¡Networks:¡Stability¡and¡Rare¡Events,¡eds.¡K.S.¡ Paul¡Glasserman¡and¡ D.¡ Yao,¡Columbia¡University¡(Springer,¡ New¡York,¡1996)¡pp.¡1-26.

  19. ¡J.G.¡ Dai¡and¡ J.¡ VandeVate,¡The¡stability¡of¡two-station¡multitype¡fluid¡networks,¡Oper.¡Res.¡48¡(2000)¡721-744.

  20. ¡J.G.¡ Dai¡and¡ G.¡ Weiss,¡Stability¡and¡instability¡of¡fluid¡models¡for¡re-entrant¡lines,¡Math.¡Oper.¡Res.¡21¡(1996)¡115-134.

  21. ¡V.¡ Dumas,¡A¡multiclass¡network¡with¡non-linear,¡non-convex,¡non-monotonic¡stability¡conditions,¡Queueing¡Systems¡25¡(1997)¡1-43.

  22. ¡J.J.¡ Hasenbein,¡Necessary¡conditions¡for¡global¡stability¡of¡multiclass¡queueing¡networks,¡Oper.¡Res.¡Lett.¡21¡(1997)¡87-94.

  23. ¡J.R.¡ Jackson,¡Networks¡of¡waiting¡lines,¡Oper.¡Res.¡5¡(1957)¡518-521.

  24. ¡O.B.¡ Jennings,¡Generalized¡round-robin¡service¡disciplines¡in¡stochastic¡networks¡with¡setup:¡Stability¡analysis¡and¡diffusion¡approximation,¡Ph.D.¡thesis,¡School¡of¡Industrial¡and¡Systems¡Engineering,¡Georgia¡Institute¡of¡Technology¡(March¡2000).

  25. ¡F.P.¡ Kelly,¡Networks¡of¡queues¡with¡customers¡of¡different¡types,¡J.¡Appl.¡Probab.¡12¡(1975)¡542-554.

  26. ¡P.R.¡ Kumar,¡Re-entrant¡lines,¡Queueing¡Systems¡13¡(1993)¡87-110.

  27. ¡P.R.¡ Kumar¡and¡ T.I.¡ Seidman,¡Dynamic¡instabilities¡and¡stabilization¡methods¡in¡distributed¡real-time¡scheduling¡of¡manufacturing¡systems,¡IEEE¡Trans.¡Automat.¡Control¡35¡(1990)¡289-298.

  28. ¡S.¡ Kumar¡and¡ P.R.¡ Kumar,¡Fluctuation¡smoothing¡policies¡are¡stable¡for¡stochastic¡reentrant¡lines,¡Discrete¡Event¡Dyn.¡Systems¡6¡(1996)¡361-370.

  29. ¡S.H.¡ Lu¡and¡ P.R.¡ Kumar,¡Distributed¡scheduling¡based¡on¡due¡dates¡and¡buffer¡priorities,¡IEEE¡Trans.¡Automat.¡Control¡36¡(1991)¡1406-1416.

  30. ¡S.P.¡ Meyn,¡Transience¡of¡multiclass¡queueing¡networks¡via¡fluid¡limit¡models,¡Ann.¡Appl.¡Probab.¡5¡(1995)¡946-957.

  31. ¡A.N.¡ Rybko¡and¡ A.L.¡ Stolyar,¡Ergodicity¡of¡stochastic¡processes¡describing¡the¡operation¡of¡open¡queueing¡networks,¡Problems¡Inform.¡Transmission¡28¡(1992)¡199-220.

  32. ¡T.I.¡ Seidman,¡'First¡come,¡first¡served'¡can¡be¡unstable!,¡IEEE¡Trans.¡Automat.¡Control¡39¡(1994)¡2166-2171.

  33. ¡A.¡ Stolyar,¡On¡the¡stability¡of¡multiclass¡queueing¡networks:¡a¡relaxed¡sufficient¡condition¡via¡limiting¡fluid¡processes,¡in:¡Markov¡Processes¡and¡Related¡Fields¡(1995)¡pp.¡491-512.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasenbein, J.J. Stability of Fluid Networks with Proportional Routing. Queueing Systems 38, 327–354 (2001). https://doi.org/10.1023/A:1010959706486

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010959706486