Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Explicit Solutions for Variational Problems in the Quadrant

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We study a variational problem (VP) that is related to semimartingale reflecting Brownian motions (SRBMs). Specifically, this VP appears in the large deviations analysis of the stationary distribution of SRBMs in the d-dimensional orthant R d +. When d=2, we provide an explicit analytical solution to the VP. This solution gives an appealing characterization of the optimal path to a given point in the quadrant and also provides an explicit expression for the optimal value of the VP. For each boundary of the quadrant, we construct a “cone of boundary influence”, which determines the nature of optimal paths in different regions of the quadrant. In addition to providing a complete solution in the 2-dimensional case, our analysis provides several results which may be used in analyzing the VP in higher dimensions and more general state spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Atar and P. Dupuis, Large deviations and queueing networks: Methods for rate function identification, Technical Report LCDS 98–19, Lefschetz Center for Dynamical Systems, Brown University (1998).

  2. A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences(Academic Press, New York, 1979).

  3. A. Bernard and A. El Kharroubi, Régulations déterministes et stochastiques dans le premier “orthant” de ℝn, Stochastics Stochastics Rep. 34 (1991) 149–167.

  4. D. Bertsimas, I. Paschalidis and J.N. Tsitsiklis, On the large deviations behaviour of acyclic networks of G/G/1 queues, Ann. Appl. Probab. 8 (1998) 1027–1069.

    Google Scholar 

  5. A.A. Borovkov and A.A. Mogulskii, Large deviations for stationary Markov chains in a quarter plane, in: Probability Theory and Mathematical Statistics,Tokyo, 1995(World Sci. Publishing, River Edge, NJ, 1996) pp. 12–19.

    Google Scholar 

  6. A. Budhiraja and P. Dupuis, Simple necessary and sufficient conditions for the stability of constrained processes, SIAM J. Appl. Math. 59 (1999) 1686–1700.

    Google Scholar 

  7. H. Chen and A. Mandelbaum, Hierarchical modeling of stochastic networks II: Strong approximations, in: Stochastic Modeling and Analysis of Manufacturing Systems, ed. D.D. Yao (Springer, New York, 1994) chapter 3, pp. 107–132.

    Google Scholar 

  8. J.G. Dai and J.M. Harrison, Reflected Brownian motion in an orthant: Numerical methods for steadystate analysis, Ann. Appl. Probab. 2 (1992) 65–86.

    Google Scholar 

  9. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Applications of Mathematics, Vol. 38 (Springer, New York, 1998).

    Google Scholar 

  10. P. Dupuis and R.S. Ellis, The large deviation principle for a general class of queueing systems, Trans. Amer. Math. Soc. 347 (1996) 2689–2751.

    Google Scholar 

  11. P. Dupuis and H. Ishii, Large deviation behaviour of two competing queues, in: Proc. of the 22nd Annual Conf. on Information Sciences and Systems, March 1988.

  12. P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications, Stochastics 35 (1991) 31–62.

    Google Scholar 

  13. P. Dupuis and K. Ramanan, A Skrokhod problem formulation and large deviation analysis of a processor sharing model, Queueing Systems 28 (1998) 109–124.

    Google Scholar 

  14. P. Dupuis and R.J. Williams, Lyapunov functions for semimartingale reflecting Brownian motions, Ann. Probab. 22 (1994) 680–702.

    Google Scholar 

  15. J.M. Harrison, The diffusion approximation for tandem queues in heavy traffic, Adv. in Appl. Probab. 10 (1978) 886–905.

    Google Scholar 

  16. J.M. Harrison and V. Nguyen, Brownian models of multiclass queueing networks: Current status and open problems, Queueing Systems 13 (1993) 5–40.

    Google Scholar 

  17. J.M. Harrison and M.I. Reiman, Reflected Brownian motion on an orthant, Ann. Probab. 9 (1981) 302–308.

    Google Scholar 

  18. J.M. Harrison and R.J. Williams, Brownian models of open queueing networks with homogeneous customer populations, Stochastics 22 (1987) 77–115.

    Google Scholar 

  19. J.M. Harrison and R.J. Williams, Multidimensional reflected Brownian motions having exponential stationary distributions, Ann. Probab. 15 (1987) 115–137.

    Google Scholar 

  20. D.G. Hobson and L. Rogers, Recurrence and transience of reflecting Brownian motion in the quadrant, Math. Proc. Cambridge Phil. Soc. 113 (1994) 387–399.

    Google Scholar 

  21. I. Ignatyuk, V. Malyshev and V. Scherbakov, Boundary effects in large deviations problems, Russian Math. Surveys 49 (1994) 41–99.

    Google Scholar 

  22. G. Kieffer, The large deviation principle for two-dimensional stable systems, Ph.D. thesis, University of Massachusetts (1995).

  23. C. Knessl, Diffusion approximation to two parallel queues with processor sharing, IEEE Trans. Automat. Control 36 (1991) 1356–1367.

    Google Scholar 

  24. C. Knessl, On the diffusion approximation to a fork-join queuing model, SIAM J. Appl. Math. 51 (1991) 160–171.

    Google Scholar 

  25. C. Knessl and C. Tier, A diffusion model for two tandem queues with general renewal input, Comm. Statist. Stochastic Models 15 (1999) 299–343.

    Google Scholar 

  26. K. Majewski, Large deviations of stationary reflected Brownian motions, in: Stochastic Networks: Theory and Applications, eds. F.P. Kelly, S. Zachary and I. Ziedins, Royal Statistical Society (Oxford Univ. Press, Oxford, 1996).

    Google Scholar 

  27. K. Majewski, Solving variational problems associated with large deviations of reflected Brownian motions, Working paper (December, 1996).

  28. K. Majewski, Heavy traffic approximations of large deviations of feedforward queueing networks, Queueing Systems 28 (1998) 125–155.

    Google Scholar 

  29. K. Majewski, Large deviations of the steady-state distribution of reflected processes with applications to queueing systems, Queueing Systems 29 (1998) 351–381.

    Google Scholar 

  30. N. O'Connell, Large deviations for departures from a shared buffer, J. Appl. Probab. 34 (1997) 753–766.

    Google Scholar 

  31. N. O'Connell, Large deviations for queue lengths at a multi-buffered resource, J. Appl. Probab. 35 (1998) 240–245.

    Google Scholar 

  32. M.I. Reiman and R.J. Williams, A boundary property of semimartingale reflecting Brownian motions, Probab. Theory Related Fields 77 (1988) 87–97 and 80 (1989) 633.

    Google Scholar 

  33. A. Shwartz and A. Weiss, Large Deviations for Performance Analysis (Chapman & Hall, New York, 1995).

    Google Scholar 

  34. L.M. Taylor and R.J. Williams, Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant, Probab. Theory Related Fields 96 (1993) 283–317.

    Google Scholar 

  35. R.J. Williams, Recurrence classification and invariant measure for reflected Brownian motion in a wedge, Ann. Probab. 13 (1985) 758–778.

    Google Scholar 

  36. R.J. Williams, Semimartingale reflecting Brownian motions in the orthant, in: Stochastic Networks, eds. F.P. Kelly and R.J. Williams,The IMA Volumes in Mathematics and its Applications, Vol. 71 (Springer, New York, 1995) pp. 125–137.

    Google Scholar 

  37. R.J. Williams, On the approximation of queueing networks in heavy traffic, in: Stochastic Networks: Theory and Applications, eds. F.P. Kelly, S. Zachary and I. Ziedins, Royal Statistical Society (Oxford Univ. Press, Oxford, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avram, F., Dai, J. & Hasenbein, J. Explicit Solutions for Variational Problems in the Quadrant. Queueing Systems 37, 259–289 (2001). https://doi.org/10.1023/A:1011004620420

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011004620420