Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Computing Structural Changes in Evolving Surfaces and their Appearance

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

As a surface undergoes a one-parameter family of deformations, its shape and its appearance change smoothly except at certain critical parameter values where abrupt structural changes occur. This paper considers the case of surfaces defined as the zero set of smooth density functions undergoing a Gaussian diffusion process and addresses the problem of computing the critical parameter values corresponding to structural changes in the parabolic curves of a surface and in its aspect graph. An algorithm based on homotopy continuation and curve tracing is proposed in the case of polynomial density functions, whose zero set is an algebraic surface. It has been implemented and examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Arnol'd, V. 1969. Singularities of smooth mappings. Russian Math. Surveys, 23:3-44.

    Google Scholar 

  • Arnol'd, V. 1984. Catastrophe Theory. Springer-Verlag: Heidelberg.

    Google Scholar 

  • Asada, H. and Brady, J. 1986. The curvature primal sketch. IEEE Trans. Patt. Anal. Mach. Intell., 8(1):2-14.

    Google Scholar 

  • Bruce, J., Giblin, P., and Tari, F. 1996a. Parabolic curves of evolving surfaces. Int. J. of Comp. Vision, 17(3):291-306.

    Google Scholar 

  • Bruce, J., Giblin, P., and Tari, F. 1996b. Ridges, crests and subparabolic lines of evolving surfaces, Int. J. of Comp. Vision, 18(3):195-210.

    Google Scholar 

  • Castore, G. 1984. Solid modeling, aspect graphs, and robot vision. In Solid Modeling by Computer, M.S. Pickett and J.W. Boyse (Eds.). Plenum Press, NY, pp. 277-292.

    Google Scholar 

  • Chakravarty, I. 1982. The use of characteristic views as a basis for recognition of three-dimensional objects. Image Processing Laboratory IPL-TR-034, Rensselaer Polytechnic Institute.

  • Eggert, D. and Bowyer, K. 1989. Computing the orthographic projection aspect graph of solids of revolution. In Proc. IEEE Workshop on Interpretation of 3D Scenes, Austin, TX, pp. 102-108.

  • Eggert, D., Bowyer, K., Dyer, C., Christensen, H., and Goldgof, D. 1993. The scale space aspect graph. IEEE Trans. Patt. Anal. Mach. Intell., 15(11):1114-1130.

    Google Scholar 

  • Gigus, Z., Canny, J., and Seidel, R. 1991. Efficiently computing and representing aspect graphs of polyhedral objects. IEEE Trans.Patt. Anal. Mach. Intell., 13(6):442-451.

    Google Scholar 

  • Hebert, M. and Kanade, T. 1985. The 3D profile method for object recognition. In Proc. IEEE Conf. Comp. Vision Patt. Recog., San Francisco, CA, pp. 458-463.

  • Hilbert, D. and Cohn-Vossen, S. 1952. Geometry and the Imagination. Chelsea: New York.

    Google Scholar 

  • Ikeuchi, K. and Kanade, T. 1988. Automatic generation of object recognition programs. Proceedings of the IEEE, 76(8):1016-1035.

    Google Scholar 

  • Kergosien, Y. 1981. La famille des projections orthogonales d'une surface et ses singularit's. C.R. Acad. Sc. Paris, 292:929-932.

    Google Scholar 

  • Kergosien, Y. 1991. Generic sign systems in medical imaging. IEEE Computer Graphics and Applications, 11(5):46-65.

    Google Scholar 

  • Kimia, B., Tannenbaum, A., and Zucker, S. 1995. Shapes, shocks, and deformations I: The components of shape and the reactiondiffusion space. Int. J. of Comp. Vision, 15:189-224.

    Google Scholar 

  • Koenderink, J. 1984. What does the occluding contour tell us about solid shape?. Perception 13:321-330.

    Google Scholar 

  • Koenderink, J. 1990. Solid Shape. MIT Press: Cambridge, MA.

    Google Scholar 

  • Koenderink, J. and Van Doorn, A. 1976. The singularities of the visual mapping. Biological Cybernetics, 24:51-59.

    Google Scholar 

  • Koenderink, J. and Van Doorn, A. 1979. The internal representation of solid shape with respect to vision. Biological Cybernetics, 32:211-216.

    Google Scholar 

  • Kriegman, D. and Ponce, J. 1990. Computing exact aspect graphs of curved objects: Solids of revolution. Int. J. of Comp. Vision, 5(2):119-135.

    Google Scholar 

  • Kriegman, D. and Ponce, J. 1991. A new curve tracing algorithm and some applications. In Curves and Surfaces, P. Laurent, A.L. Méhauté, and L. Schumaker (Eds.). Academic Press: New York, pp. 267-270.

    Google Scholar 

  • Leyton, M. 1988. Aprocess grammar for shape. Artificial Intelligence Journal, 34:213-247.

    Google Scholar 

  • Lorensen, W. and Cline, H. 1987. Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics, 21:163-169.

    Google Scholar 

  • Mackworth, A. and Mokhtarian, F. 1988. The renormalized curvature scale space and the evolution properties of planar curves. In Proc. IEEE Conf. Comp. Vision Patt. Recog., pp. 318-326.

  • Marr, D. 1982. Vision. Freeman: San Francisco.

    Google Scholar 

  • Monga, O., Lengagne, R., and Deriche, R. 1994. Extraction of zerocrossings of the curvature derivatives in volumic 3D medical images: A multi-scale approach. In Proc. IEEE Conf. Comp. Vision Patt. Recog. Seattle, WA, pp. 852-855.

  • Morgan, A. 1987. Solving Polynomial Systems using Continuation for Engineering and Scientific Problems. Prentice Hall: Englewood Cliffs, NJ.

    Google Scholar 

  • Noble, A., Wilson, D., and Ponce, J. 1997. On computing aspect graphs of smooth shapes from volumetric data. Computer Vision and Image Understanding: Special issue on Mathematical Methods in Biomedical Image Analysis 66(2):179-192.

    Google Scholar 

  • Pae, S. 2000. Computing the critical events of evolving algebraic surfaces and scale-space aspect graphs of algebraic surfaces of revolution. Master's Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign.

  • Pae, S. and Ponce, J. 1999. Toward a scale-space aspect graph: Solids of revolution. In Proc. IEEE Conf. Comp. Vision Patt. Recog., Vol. II. Fort Collins, CO, pp. 196-201.

    Google Scholar 

  • Petitjean, S. 1995. Géométrie énumérative et contacts de veriétés Linéaires: Application aux graphes d'aspects d'objets courbes. Ph.D. Thesis, Institut National Polytechnique de Lorraine.

  • Petitjean, S., Ponce, J., and Kriegman, D. 1992. Computing exact aspect graphs of curved objects: Algebraic surfaces. Int. J. of Comp. Vision, 9(3):231-255.

    Google Scholar 

  • Plantinga, H. and Dyer, C. 1990. Visibility, occlusion, and the aspect graph. Int. J. of Comp. Vision, 5(2):137-160.

    Google Scholar 

  • Platonova, O. 1981. Singularities of the mutual disposition of a surface and a line. Russian Mathematical Surveys, 36(1):248-249.

    Google Scholar 

  • Ponce, J. and Brady, J. 1987. Toward a surface primal sketch. In Three-Dimensional MachineVision,T. Kanade (Ed.). Kluwer Publishers, Dordrecht, pp. 195-240.

    Google Scholar 

  • Rieger, J. 1987. On the classification of views of piecewise-smooth objects. Image and Vision Computing, 5:91-97.

    Google Scholar 

  • Rieger, J. 1992. Global bifurcations sets and stable projections of non-singular algebraic surfaces. Int. J. of Comp. Vision, 7(3):171-194.

    Google Scholar 

  • Sethian, J. 1996. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Combridge University Press: Cambridge, MA.

    Google Scholar 

  • Shimshoni, I. and Ponce, J. 1997. Finite-resolution aspect graphs of polyhedral objects. IEEE Tanns. Patt. Anal. Mach. Intell., 19(4):315-327.

    Google Scholar 

  • Stam, D. 1992. Distributed homotopy continuation and its application to robotic grasping. Master's Thesis, University of Illinois at Urbana-Champaign. Beckman Institute Tech. Report UIUC-BIAI-RCV-92-03.

  • Stewman, J. and Bowyer, K. 1988. Creating the perspective projection aspect graph of polyhedral objects. In Proc. Int. Conf. Comp. Vision. Tampa, FL, pp. 495-500.

  • Thirion, J. and Gourdon, G. 1993. The 3D marching lines algorithm: New results and proofs. Technical Report 1881-1, INRIA.

  • Thom, R. 1972. Structural Stability and Morphogenesis. Benjamin: New-York.

    Google Scholar 

  • Wang R. and Freeman, H. 1990. Object recognition based on characteristic views. In International Conference onPattern Recognition, Atlantic City, NJ, pp. 8-12.

  • Weatherburn, C. 1927. Differential Geometry. Cambridge University Press: Cambridge, MA.

    Google Scholar 

  • Whitney, H. 1955. On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane. Annals of Mathematics, 62(3):374-410.

    Google Scholar 

  • Witkin, A. 1983. Scale-space filtering. In Proc. International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, pp. 1019-1022.

  • Yuille, A. and Poggio, T. 1986. Scaling theorems for zero-crossings. IEEE Trans. Patt. Anal. Mach. Intell., 8(1):15-25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pae, SI., Ponce, J. On Computing Structural Changes in Evolving Surfaces and their Appearance. International Journal of Computer Vision 43, 113–131 (2001). https://doi.org/10.1023/A:1011170702891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011170702891