Abstract
As a surface undergoes a one-parameter family of deformations, its shape and its appearance change smoothly except at certain critical parameter values where abrupt structural changes occur. This paper considers the case of surfaces defined as the zero set of smooth density functions undergoing a Gaussian diffusion process and addresses the problem of computing the critical parameter values corresponding to structural changes in the parabolic curves of a surface and in its aspect graph. An algorithm based on homotopy continuation and curve tracing is proposed in the case of polynomial density functions, whose zero set is an algebraic surface. It has been implemented and examples are presented.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arnol'd, V. 1969. Singularities of smooth mappings. Russian Math. Surveys, 23:3-44.
Arnol'd, V. 1984. Catastrophe Theory. Springer-Verlag: Heidelberg.
Asada, H. and Brady, J. 1986. The curvature primal sketch. IEEE Trans. Patt. Anal. Mach. Intell., 8(1):2-14.
Bruce, J., Giblin, P., and Tari, F. 1996a. Parabolic curves of evolving surfaces. Int. J. of Comp. Vision, 17(3):291-306.
Bruce, J., Giblin, P., and Tari, F. 1996b. Ridges, crests and subparabolic lines of evolving surfaces, Int. J. of Comp. Vision, 18(3):195-210.
Castore, G. 1984. Solid modeling, aspect graphs, and robot vision. In Solid Modeling by Computer, M.S. Pickett and J.W. Boyse (Eds.). Plenum Press, NY, pp. 277-292.
Chakravarty, I. 1982. The use of characteristic views as a basis for recognition of three-dimensional objects. Image Processing Laboratory IPL-TR-034, Rensselaer Polytechnic Institute.
Eggert, D. and Bowyer, K. 1989. Computing the orthographic projection aspect graph of solids of revolution. In Proc. IEEE Workshop on Interpretation of 3D Scenes, Austin, TX, pp. 102-108.
Eggert, D., Bowyer, K., Dyer, C., Christensen, H., and Goldgof, D. 1993. The scale space aspect graph. IEEE Trans. Patt. Anal. Mach. Intell., 15(11):1114-1130.
Gigus, Z., Canny, J., and Seidel, R. 1991. Efficiently computing and representing aspect graphs of polyhedral objects. IEEE Trans.Patt. Anal. Mach. Intell., 13(6):442-451.
Hebert, M. and Kanade, T. 1985. The 3D profile method for object recognition. In Proc. IEEE Conf. Comp. Vision Patt. Recog., San Francisco, CA, pp. 458-463.
Hilbert, D. and Cohn-Vossen, S. 1952. Geometry and the Imagination. Chelsea: New York.
Ikeuchi, K. and Kanade, T. 1988. Automatic generation of object recognition programs. Proceedings of the IEEE, 76(8):1016-1035.
Kergosien, Y. 1981. La famille des projections orthogonales d'une surface et ses singularit's. C.R. Acad. Sc. Paris, 292:929-932.
Kergosien, Y. 1991. Generic sign systems in medical imaging. IEEE Computer Graphics and Applications, 11(5):46-65.
Kimia, B., Tannenbaum, A., and Zucker, S. 1995. Shapes, shocks, and deformations I: The components of shape and the reactiondiffusion space. Int. J. of Comp. Vision, 15:189-224.
Koenderink, J. 1984. What does the occluding contour tell us about solid shape?. Perception 13:321-330.
Koenderink, J. 1990. Solid Shape. MIT Press: Cambridge, MA.
Koenderink, J. and Van Doorn, A. 1976. The singularities of the visual mapping. Biological Cybernetics, 24:51-59.
Koenderink, J. and Van Doorn, A. 1979. The internal representation of solid shape with respect to vision. Biological Cybernetics, 32:211-216.
Kriegman, D. and Ponce, J. 1990. Computing exact aspect graphs of curved objects: Solids of revolution. Int. J. of Comp. Vision, 5(2):119-135.
Kriegman, D. and Ponce, J. 1991. A new curve tracing algorithm and some applications. In Curves and Surfaces, P. Laurent, A.L. Méhauté, and L. Schumaker (Eds.). Academic Press: New York, pp. 267-270.
Leyton, M. 1988. Aprocess grammar for shape. Artificial Intelligence Journal, 34:213-247.
Lorensen, W. and Cline, H. 1987. Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics, 21:163-169.
Mackworth, A. and Mokhtarian, F. 1988. The renormalized curvature scale space and the evolution properties of planar curves. In Proc. IEEE Conf. Comp. Vision Patt. Recog., pp. 318-326.
Marr, D. 1982. Vision. Freeman: San Francisco.
Monga, O., Lengagne, R., and Deriche, R. 1994. Extraction of zerocrossings of the curvature derivatives in volumic 3D medical images: A multi-scale approach. In Proc. IEEE Conf. Comp. Vision Patt. Recog. Seattle, WA, pp. 852-855.
Morgan, A. 1987. Solving Polynomial Systems using Continuation for Engineering and Scientific Problems. Prentice Hall: Englewood Cliffs, NJ.
Noble, A., Wilson, D., and Ponce, J. 1997. On computing aspect graphs of smooth shapes from volumetric data. Computer Vision and Image Understanding: Special issue on Mathematical Methods in Biomedical Image Analysis 66(2):179-192.
Pae, S. 2000. Computing the critical events of evolving algebraic surfaces and scale-space aspect graphs of algebraic surfaces of revolution. Master's Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign.
Pae, S. and Ponce, J. 1999. Toward a scale-space aspect graph: Solids of revolution. In Proc. IEEE Conf. Comp. Vision Patt. Recog., Vol. II. Fort Collins, CO, pp. 196-201.
Petitjean, S. 1995. Géométrie énumérative et contacts de veriétés Linéaires: Application aux graphes d'aspects d'objets courbes. Ph.D. Thesis, Institut National Polytechnique de Lorraine.
Petitjean, S., Ponce, J., and Kriegman, D. 1992. Computing exact aspect graphs of curved objects: Algebraic surfaces. Int. J. of Comp. Vision, 9(3):231-255.
Plantinga, H. and Dyer, C. 1990. Visibility, occlusion, and the aspect graph. Int. J. of Comp. Vision, 5(2):137-160.
Platonova, O. 1981. Singularities of the mutual disposition of a surface and a line. Russian Mathematical Surveys, 36(1):248-249.
Ponce, J. and Brady, J. 1987. Toward a surface primal sketch. In Three-Dimensional MachineVision,T. Kanade (Ed.). Kluwer Publishers, Dordrecht, pp. 195-240.
Rieger, J. 1987. On the classification of views of piecewise-smooth objects. Image and Vision Computing, 5:91-97.
Rieger, J. 1992. Global bifurcations sets and stable projections of non-singular algebraic surfaces. Int. J. of Comp. Vision, 7(3):171-194.
Sethian, J. 1996. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Combridge University Press: Cambridge, MA.
Shimshoni, I. and Ponce, J. 1997. Finite-resolution aspect graphs of polyhedral objects. IEEE Tanns. Patt. Anal. Mach. Intell., 19(4):315-327.
Stam, D. 1992. Distributed homotopy continuation and its application to robotic grasping. Master's Thesis, University of Illinois at Urbana-Champaign. Beckman Institute Tech. Report UIUC-BIAI-RCV-92-03.
Stewman, J. and Bowyer, K. 1988. Creating the perspective projection aspect graph of polyhedral objects. In Proc. Int. Conf. Comp. Vision. Tampa, FL, pp. 495-500.
Thirion, J. and Gourdon, G. 1993. The 3D marching lines algorithm: New results and proofs. Technical Report 1881-1, INRIA.
Thom, R. 1972. Structural Stability and Morphogenesis. Benjamin: New-York.
Wang R. and Freeman, H. 1990. Object recognition based on characteristic views. In International Conference onPattern Recognition, Atlantic City, NJ, pp. 8-12.
Weatherburn, C. 1927. Differential Geometry. Cambridge University Press: Cambridge, MA.
Whitney, H. 1955. On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane. Annals of Mathematics, 62(3):374-410.
Witkin, A. 1983. Scale-space filtering. In Proc. International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, pp. 1019-1022.
Yuille, A. and Poggio, T. 1986. Scaling theorems for zero-crossings. IEEE Trans. Patt. Anal. Mach. Intell., 8(1):15-25.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Pae, SI., Ponce, J. On Computing Structural Changes in Evolving Surfaces and their Appearance. International Journal of Computer Vision 43, 113–131 (2001). https://doi.org/10.1023/A:1011170702891
Issue Date:
DOI: https://doi.org/10.1023/A:1011170702891