Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Algorithms for the Block Hessenberg Form

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

We investigate in this paper the performance of parallel algorithms for computing the controllable part of a control linear system, with application to the computation of minimal realizations. Our approach is based on a method that transforms the matrices of the system to block Hessenberg form by using rank-revealing orthogonal factorizations.

The experimental analysis on a high performance architecture includes two rank-revealing numerical tools: the SVD and the rank-revealing QR factorizations. Results are also reported, using the rank-revealing QR factorizations, on a parallel distributed architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. O. Anderson and J. B. Moore. Linear Optimal Control. Prentice-Hall, Int., Englewood Cliffs, 1971.

    Google Scholar 

  2. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK user's guide. SIAM, Philadelphia, 1992.

    Google Scholar 

  3. P. Benner, A. J. Laub and V. Mehrmann. A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: continuous-time case. Technical Report SPC 95-22, Fakultät für Mathematik, TU Chemnitz-Zwickau, Chemnitz, Germany, 1995.

    Google Scholar 

  4. C. H. Bischof. A parallel QR factorization with controlled local pivoting. SIAM J. Scien. and Stat. Comp., 12:36-57, 1991.

    Google Scholar 

  5. C. H. Bischof and G. Quintana. Computing rank-revealing QR factorizations of dense matrices. ACM Trans. Math. Soft., 24(2):226-253, 1998.

    Google Scholar 

  6. S. Chandrasekaran and I. Ipsen. On rank-revealing QR factorizations. SIAM J. on Matrix Anal. and Appl., 15:592-622, 1994.

    Google Scholar 

  7. J. J. Dongarra, R. van de Geijn, and R. Whaley. Two dimensional basic linear algebra communications subprograms. Technical Report 37, LAPACK Working note, 1991.

  8. G. H. Golub. Numerical methods for solving linear least squares problems. Numer. Math., 7:206-216, 1965.

    Google Scholar 

  9. G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins University Press, Baltimore, 1989.

    Google Scholar 

  10. M. T. Heath and C. H. Romine. Parallel solution of triangular systems on distributed-memory multiprocessors. SIAM J. Scien. and Stat. Comp., 9:558-588, 1988.

    Google Scholar 

  11. I. C. F. Ipsen, Y. Saad, and M. Schulz. Solving dense linear systems on a ring of processors. Linear Algebra and Appl., 77:205-239, 1986.

    Google Scholar 

  12. A. J. Laub and J. Gardiner. Hypercube implementation of some parallel algorithms in control. In M. Denham and A. J. Laub, editors, Advanced Computing Concepts and Tech. in Control Eng., pp. 361-390, Springer-Verlag, 1988.

  13. D. O'Leary and G. W. Stewart. Assignment and scheduling in parallel matrix factorization. Linear Algebra and Appl., 77:275-300, 1986.

    Google Scholar 

  14. P. Hr. Petkov. Perturbation bounds for orthogonal canonical form and numerical controllability analysis. IEEE Trans. on Autom. Contr., 38:639-643, 1993.

    Google Scholar 

  15. P. Hr. Petkov, N. D. Konstantinov, and M. M. Christov. Computational Methods for Linear Control Systems. Prentice-Hall International Ltd., UK, 1991.

    Google Scholar 

  16. E. S. Quintana and V. Hernández. Stabilizing large control linear systems on multicomputers. In J. Palma and J. Dongarra, editors, Lectures in control and information sciences 1215, pp. 339-364. Springer-Verlag, 1997.

  17. E. S. Quintana and V. Hernández. Parallel algorithms for solving the algebraic Riccati equation via the matrix sign function. Automatica, 34:151-156, 1998.

    Google Scholar 

  18. G. Quintana and E. S. Quintana. Guaranteeing termination of Chandrasekaran and Ipsen's algorithm for computing rank-revealing QR factorizations. Technical Report MCS-P564-0196, Argonne Nat. Lab., 1996.

  19. G. Quintana and E. S. Quintana. Parallel codes for computing the numerical rank. Linear Algebra and Appl., 275–276:451-470, 1998.

    Google Scholar 

  20. G. Quintana, X. Sun, and C. H. Bischof. A BLAS-3 version of the QR factorization with column pivoting. SIAM J. Scien. Comp., 19:1486-1494, 1998.

    Google Scholar 

  21. I. Rosen and C. Wang. A multi-level technique for the approximate solution of operator Lyapunov and algebraic Riccati equations. SIAM J. Numer. Anal., 32:514-541, 1995.

    Google Scholar 

  22. P. M. Van Dooren. The computation of Kronecker's canonical form of a singular pencil. Linear Algebra and Appl., 27:121-135, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quintana-Ortí, E.S., Quintana-Ortí, G., Castillo, M. et al. Efficient Algorithms for the Block Hessenberg Form. The Journal of Supercomputing 20, 55–66 (2001). https://doi.org/10.1023/A:1011192320367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011192320367