Abstract
We investigate in this paper the performance of parallel algorithms for computing the controllable part of a control linear system, with application to the computation of minimal realizations. Our approach is based on a method that transforms the matrices of the system to block Hessenberg form by using rank-revealing orthogonal factorizations.
The experimental analysis on a high performance architecture includes two rank-revealing numerical tools: the SVD and the rank-revealing QR factorizations. Results are also reported, using the rank-revealing QR factorizations, on a parallel distributed architecture.
Similar content being viewed by others
References
B. D. O. Anderson and J. B. Moore. Linear Optimal Control. Prentice-Hall, Int., Englewood Cliffs, 1971.
E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK user's guide. SIAM, Philadelphia, 1992.
P. Benner, A. J. Laub and V. Mehrmann. A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: continuous-time case. Technical Report SPC 95-22, Fakultät für Mathematik, TU Chemnitz-Zwickau, Chemnitz, Germany, 1995.
C. H. Bischof. A parallel QR factorization with controlled local pivoting. SIAM J. Scien. and Stat. Comp., 12:36-57, 1991.
C. H. Bischof and G. Quintana. Computing rank-revealing QR factorizations of dense matrices. ACM Trans. Math. Soft., 24(2):226-253, 1998.
S. Chandrasekaran and I. Ipsen. On rank-revealing QR factorizations. SIAM J. on Matrix Anal. and Appl., 15:592-622, 1994.
J. J. Dongarra, R. van de Geijn, and R. Whaley. Two dimensional basic linear algebra communications subprograms. Technical Report 37, LAPACK Working note, 1991.
G. H. Golub. Numerical methods for solving linear least squares problems. Numer. Math., 7:206-216, 1965.
G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins University Press, Baltimore, 1989.
M. T. Heath and C. H. Romine. Parallel solution of triangular systems on distributed-memory multiprocessors. SIAM J. Scien. and Stat. Comp., 9:558-588, 1988.
I. C. F. Ipsen, Y. Saad, and M. Schulz. Solving dense linear systems on a ring of processors. Linear Algebra and Appl., 77:205-239, 1986.
A. J. Laub and J. Gardiner. Hypercube implementation of some parallel algorithms in control. In M. Denham and A. J. Laub, editors, Advanced Computing Concepts and Tech. in Control Eng., pp. 361-390, Springer-Verlag, 1988.
D. O'Leary and G. W. Stewart. Assignment and scheduling in parallel matrix factorization. Linear Algebra and Appl., 77:275-300, 1986.
P. Hr. Petkov. Perturbation bounds for orthogonal canonical form and numerical controllability analysis. IEEE Trans. on Autom. Contr., 38:639-643, 1993.
P. Hr. Petkov, N. D. Konstantinov, and M. M. Christov. Computational Methods for Linear Control Systems. Prentice-Hall International Ltd., UK, 1991.
E. S. Quintana and V. Hernández. Stabilizing large control linear systems on multicomputers. In J. Palma and J. Dongarra, editors, Lectures in control and information sciences 1215, pp. 339-364. Springer-Verlag, 1997.
E. S. Quintana and V. Hernández. Parallel algorithms for solving the algebraic Riccati equation via the matrix sign function. Automatica, 34:151-156, 1998.
G. Quintana and E. S. Quintana. Guaranteeing termination of Chandrasekaran and Ipsen's algorithm for computing rank-revealing QR factorizations. Technical Report MCS-P564-0196, Argonne Nat. Lab., 1996.
G. Quintana and E. S. Quintana. Parallel codes for computing the numerical rank. Linear Algebra and Appl., 275–276:451-470, 1998.
G. Quintana, X. Sun, and C. H. Bischof. A BLAS-3 version of the QR factorization with column pivoting. SIAM J. Scien. Comp., 19:1486-1494, 1998.
I. Rosen and C. Wang. A multi-level technique for the approximate solution of operator Lyapunov and algebraic Riccati equations. SIAM J. Numer. Anal., 32:514-541, 1995.
P. M. Van Dooren. The computation of Kronecker's canonical form of a singular pencil. Linear Algebra and Appl., 27:121-135, 1979.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Quintana-Ortí, E.S., Quintana-Ortí, G., Castillo, M. et al. Efficient Algorithms for the Block Hessenberg Form. The Journal of Supercomputing 20, 55–66 (2001). https://doi.org/10.1023/A:1011192320367
Issue Date:
DOI: https://doi.org/10.1023/A:1011192320367