Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multigrid preconditioned Krylov subspace methods for three-dimensional numerical solutions of the incompressible Navier–Stokes equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider numerical methods for the incompressible Reynolds averaged Navier–Stokes equations discretized by finite difference techniques on non-staggered grids in body-fitted coordinates. A segregated approach is used to solve the pressure–velocity coupling problem. Several iterative pressure linear solvers including Krylov subspace and multigrid methods and their combination have been developed to compare the efficiency of each method and to design a robust solver. Three-dimensional numerical experiments carried out on scalar and vector machines and performed on different fluid flow problems show that a combination of multigrid and Krylov subspace methods is a robust and efficient pressure solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Alcouffe, A. Brandt, J.E. Dendy and J.W. Painter, The multigrid method for diffusion equations with strongly discontinuous coefficients, SIAM J. Sci. Statist. Comput. 2 (1981) 430–454.

    Article  MATH  MathSciNet  Google Scholar 

  2. S.F. Ashby, R.D. Falgout, S.G. Smith and T.W. Fogwell, Multigrid preconditioned conjugate gradients for the numerical simulation of groundwater flow on the Cray T3D, UCRL-JC-118622, Lawrence Livermore Nat. Lab. (1994).

  3. B.S. Baldwin and H. Lomax, Thin-layer approximation and algebraic model for separated turbulent flows, in: 16th AIAA Meeting, Huntsville, AIAA Paper 78–0257 (1978).

  4. A. Behie and P. Forsyth, Multigrid solution of three-dimensional problems with discontinous coefficients, Appl. Math. Comput. 13 (1983) 229–240.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Brandt, Guide to multigrid development, in: Proceedings: Multigrid Methods, Köln-Porz, eds. W. Hackbusch and U. Trottenberg (Springer, Berlin, 1982) pp. 220–312.

    Google Scholar 

  6. C.J. Chen and H.C. Chen, Finite analytic numerical method for unsteady two-dimensional Navier–Stokes equations, J. Comput. Phys. 53 (1984) 209–226.

    Article  MATH  Google Scholar 

  7. I. Demirdzic, Z. Lilek and M. Peric, Fluid flow and heat transfer test problems for nonorthogonal grids: bench-mark solutions, Internat. J. Numer. Methods Fluids 15 (1992) 329–354.

    Article  Google Scholar 

  8. J.E. Dendy, Black box multigrid, J. Comput. Phys. 48 (1982) 366–386.

    Article  MATH  MathSciNet  Google Scholar 

  9. G.B. Deng, J. Piquet, P. Queutey and M. Visonneau, Navier–Stokes equations for incompressible flows: finite-difference and finite volume methods, in: Handbook of Computational Fluid Mechanics, ed. R. Peyret (Academic Press, New York, 1996) pp. 25–97.

    Google Scholar 

  10. J.P. Van Doormal and G.D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numer. Heat Transfer 7 (1984) 147–163.

    Google Scholar 

  11. W. Hackbusch, Multigrid Methods and Applications (Springer, Berlin, 1985).

    Google Scholar 

  12. M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards 49 (1952) 409–436.

    MATH  MathSciNet  Google Scholar 

  13. R. Issa, Solution of the implicitly discretized fluid flows equations by operator-splitting, J. Comput. Phys. 62 (1986) 40–65.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Kettler, Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods, in: Proceedings: Multigrid Methods, Köln-Porz, eds. W. Hackbusch and U. Trottenberg (Springer, Berlin, 1982) pp. 502–534.

    Google Scholar 

  15. R. Kettler, Linear multigrid methods for numerical reservoir simulation, Ph.D. thesis, University of Technology, Department of Technical Mathematics and Informatics, Delft (1987).

    Google Scholar 

  16. R. Kettler and P. Wesseling, Aspects of multigrid methods for problems in three dimensions, Appl. Math. Comput. 19 (1986) 159–168.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Khalil, Analysis of linear multigrid methods for elliptic differential equations with discontinous and anisotropic coefficients, Ph.D. thesis, University of Technology, Department of Technical Mathematics and Informatics, Delft (1989).

    Google Scholar 

  18. M. Khalil, J. Van Kan and P. Wesseling, Prolongation, restriction and coarse grid approximation in a three-dimensional cell-centered multigrid method, Technical Report 88–02, University of Technology, Department of Technical Mathematics and Informatics, Delft (1988).

    Google Scholar 

  19. M. Khalil and P. Wesseling, Vertex-centered and cell-centered multigrid for interface problems, J. Comput. Phys. 98 (1992) 1–10.

    Article  MATH  Google Scholar 

  20. J.A. Meijerink and H.A. Van Der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp. 31 (1977) 148–162.

    Article  MATH  MathSciNet  Google Scholar 

  21. C.W. Oosterlee and T. Washio, An evaluation of parallel multigrid as a solver and a preconditioner for singular perturbed problems, SIAM J. Sci. Comput. 19 (1998) 87–110.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Patankar and D. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Internat. J. Heat Mass Transfer 15 (1972) 1787–1806.

    Article  MATH  Google Scholar 

  23. J. Piquet and M. Visonneau, Computation of the flow past shiplike hulls, Comput. & Fluids 19(2) (1991) 183–215.

    Article  MATH  Google Scholar 

  24. C. Rhie and W. Chow, A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation, AIAA J. 21 (1983) 1525–1532.

    Article  MATH  Google Scholar 

  25. Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Statist. Comput. 14 (1993) 461–469.

    Article  MATH  MathSciNet  Google Scholar 

  26. Y. Saad and M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Sonneveld, P. Wesseling and P.M. De Zeeuw, Multigrid and conjugate gradient methods as convergence acceleration techniques, in: Multigrid Methods for Integral and Differential Equations, eds. D.J Paddon and H. Holstein (Clarendon Press, Oxford, 1985) pp. 117–167.

    Google Scholar 

  28. P. Sonneveld, P. Wesseling and P.M. De Zeeuw, Multigrid and conjugate gradient acceleration of basic iterative methods, in: Numerical Methods for Fluid Dynamics II, eds. K.W. Morton and M.J. Baines (Clarendon Press, Oxford, 1986) pp. 347–368.

    Google Scholar 

  29. H. Stone, Iterative solution of implicit approximations of multidimensional partial differential equations, SIAM J. Numer. Anal. 5 (1968) 530–558.

    Article  MATH  MathSciNet  Google Scholar 

  30. O. Tatebe, The multigrid preconditioned conjugate gradient method, in: 6th Copper Mountain Conf.on Multigrid Methods, NASA Conference Publication 3224 (1993) pp. 621–634.

  31. C.A. Thole and U. Trottenberg, Basic smoothing procedures for the multigrid treatment of elliptic 3D-operators, Appl. Math. Comput. 19 (1986) 333–345.

    Article  MATH  MathSciNet  Google Scholar 

  32. H.A. Van Der Vorst, BICGSTAB: a fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631–644.

    Article  MATH  MathSciNet  Google Scholar 

  33. H.A. Van Der Vorst and C. Vuik, GMRESR: a family of nested GMRES methods, Numer. Linear Algebra Appl. 1 (1994) 369–386.

    Article  MATH  MathSciNet  Google Scholar 

  34. C. Vuik, P. Wesseling and S. Zeng, Further investigation on the incompressible Navier–Stokes equations by Krylov subspace and multigrid methods, Technical Report 93–93, University of Technology, Department of Technical Mathematics and Informatics, Delft (1993).

    Google Scholar 

  35. C. Vuik, P. Wesseling and S. Zeng, Numerical solution of the incompressible Navier–Stokes equations by Krylov subspace and multigrid methods, Adv. Comput. Math. 4 (1995) 27–49.

    Article  MATH  MathSciNet  Google Scholar 

  36. T. Washio and C.W. Oosterlee, An evaluation of parallel multigrid as a solver and a preconditioner for singularly perturbed problems, Part II: flexible 2D and 3D multiple semicoarsening, GMD Arbeitspapier 1012, Gesellschaft für Mathematik und Datenverarbeitung (1996), to appear in SIAM J. Sci. Comput.

  37. A.J. Van Der Wees, nonlinear multigrid method for three dimensional transonic potential flow, Ph.D. thesis, University of Technology, Department of Technical Mathematics and Informatics, Delft (1988).

    Google Scholar 

  38. P. Wesseling, Cell-centered multigrid for interface problems, J. Comput. Phys. 79 (1988) 85–91.

    Article  MATH  MathSciNet  Google Scholar 

  39. P. Wesseling, A survey of Fourier smoothing analysis results, in: 3rd European Conf.on Multigrid Methods, eds. W. Hackbusch and U. Trottenberg (Birkhäuser, Basel, 1991) pp. 105–130.

    Google Scholar 

  40. P. Wesseling, An Introduction to Multigrid Methods (Wiley, Chichester, 1992).

    MATH  Google Scholar 

  41. P. Wesseling and S. Zeng, An efficient algorithm for the computation of Galerkin coarse grid approximation for the incompressible Navier–Stokes equations, Technical Report 92–40, University of Technology, Department of Technical Mathematics and Informatics, Delft (1992).

    Google Scholar 

  42. D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries (Griffin, London, 1993).

    Google Scholar 

  43. G. Wittum, On the robustness of ILU-smoothing, in: 4th GAMM-Seminar on Robust Multigrid Methods, Notes on Numerical Fluid Mechanics 23, ed. W. Hackbusch (1988) pp. 217–239.

  44. G. Wittum, The use of fast solvers in computational fluid dynamics, Notes on Numerical Fluid Mechanics 29 (1989) 574–581.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piquet, J., Vasseur, X. Multigrid preconditioned Krylov subspace methods for three-dimensional numerical solutions of the incompressible Navier–Stokes equations. Numerical Algorithms 17, 1–32 (1998). https://doi.org/10.1023/A:1011689512871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011689512871