Abstract
A new integrable case is found for the Kirchhoff equation. The additional integral of motion is a fourth-degree polynomial, the principal metric is diagonal with the eigenvalues a 1 = a 2 = 1 and a 3 = 2, and the other two metrics are nondiagonal.
Similar content being viewed by others
REFERENCES
V. A. Steklov, On the Motion of a Rigid Body in a Fluid [in Russian], Press Adolf Darre, Kharkov (1893).
V. V. Kozlov, Symmetries, Topology, and Resonances in Hamiltonian Mechanics [in Russian], Udmurdski State Univ., Izhevsk (1995).
S. P. Novikov, Russ. Math. Surv., 37, 1 (1982).
T. Wolf and A. Brand, The Computer Algebra Package CRACK for Investigating PDEs (http://www.unikoeln. de/REDUCE/3.6/doc/crack/) (1992).
A. P. Veselov, Sov. Math. Dokl., 27, 740 (1983).
M. Adler and P. van Moerbeke, Commun. Math. Phys., 113, 659 (1988).
M. Adler and P. van Moerbeke, Adv. Math. Suppl. Stud., 9, 81 (1986).
A. G. Reyman and M. A. Semenov-Tian-Shansky, Commun. Math. Phys., 105, 461 (1986).
A. I. Bobenko, A. G. Reyman, and M. A. Semenov-Tian-Shansky, Commun. Math. Phys., 122, 321 (1989).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Sokolov, V.V. A New Integrable Case for the Kirchhoff Equation. Theoretical and Mathematical Physics 129, 1335–1340 (2001). https://doi.org/10.1023/A:1012411326312
Issue Date:
DOI: https://doi.org/10.1023/A:1012411326312