Abstract
Standard models for model predicate logic consist of a Kripke frame whose worlds come equipped with relational structures. Both modal and two-sorted predicate logic are natural languages for speaking about such models. In this paper we compare their expressivity. We determine a fragment of the two-sorted language for which the modal language is expressively complete on S5-models. Decidable criteria for modal definability are presented.
Similar content being viewed by others
REFERENCES
Abiteboul, S., Herr, L. and van den Bussche, J.: Temporal connectives versus explicit timestamps in temporal query languages, in J. Clifford and A. Tuzhilin (eds), Recent Advances in Temporal Databases, Springer, 1995, pp. 43–57.
Blackburn, P.: Nominal tense logic, Notre Dame J. Formal Logic 34 (1993), 56–83.
Bowen, K. A.: Model Theory of Modal Logic, Reidel, Dordrecht, 1979.
Chagrov, A. V. and Zakharyaschev, M. V.: Modal Logic, Clarendon Press, Oxford, 1997.
Chang, C. C. and Keisler, H. J.: Model Theory, North-Holland, Amsterdam, 1990.
Cresswell, M. J.: A note on de re modalities, Logique et Analyse 158 (1997), 147–153.
de Rijke, M.: The modal logic of inequality, J. Symbolic Logic 57 (1990), 566–584.
Fine, K.: Model theory for modal logic, Part I: The de re/de dicto distinction, J. Philos. Logic 7 (1978), 125–156.
Fine, K.: Model theory for modal logic, Part II: The elimination of de re modality, J. Philos. Logic 7 (1978), 277–306.
Fine, K.:Model theory for modal logic, Part III: Existence and predication, J. Philos. Logic 10 (1981), 293–307.
Forbes, G.: Languages of Possibility, Basil Blackwell, Oxford, 1989.
Garson, J. W.: Quantification in modal logic, in D. Gabbay and F. Guenthner (eds), Handbook of Philosophical Logic, Vol. II, Kluwer Acad. Publ., Dordrecht, 1984, pp. 249–307.
Ghilardi, S.: Incompleteness results in Kripke semantics, J. Symbolic Logic 56 (1991), 517–538.
Hazen, A.: Expressive completeness in modal language, J. Philos. Logic 5 (1976), 25–46.
Hodes, H.: Some theorems on the expressive limitations of modal languages, J. Philos. Logic 13 (1984), 13–26.
Hodkinson, I., Wolter, F. and Zakharyaschev, M.: Decidable fragments of first-order temporal logics, Ann. Pure Appl. Logic 106 (2000), 85–134.
Hughes, G. E. and Cresswell, M. J.: A New Introduction to Modal Logic, Routledge, London, 1996.
Kaminski, M.: The elimination of de re formulas, J. Philos. Logic 26 (1997), 411–422.
Kamp, H.: Formal properties of ‘now’, Theoria 37 (1972), 227–273.
Kim, J.: Supervenience and Mind, Cambridge University Press, 1993.
Lewis, D.: On the Plurality of Worlds, Basil Blackwell, Oxford, 1986.
McLaughlin, B. P.: Varieties of supervenience, in E. Savellos and U. Yalçin (eds), Supervenience: New Essays, Cambridge University Press, Cambridge, 1995, pp. 23–59.
Savellos, E. and Yalçin, U. (eds): Supervenience: New Essays, Cambridge University Press, 1995.
Skvortsov, D. P. and Shehtman, V. B.: Maximal kripke-type semantics for modal and superintuitionistic predicate logics, Ann. Pure Appl. Logic 63 (1993), 69–101.
van Benthem, J.: Correspondence theory, in D. Gabbay and F. Guenthner (eds), Handbook of Philosophical Logic, Vol. II, Kluewer, Acad. Publ., Dordrecht, 1984, pp. 167–247.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Sturm, H., Wolter, F. First-order Expressivity for S5-models: Modal vs. Two-sorted Languages. Journal of Philosophical Logic 30, 571–591 (2001). https://doi.org/10.1023/A:1013360121031
Issue Date:
DOI: https://doi.org/10.1023/A:1013360121031