Abstract
In this paper, we present neural network clustering by deterministic annealing as a powerful strategy for self-organized segmentation of biomedical image time-series data identifying groups of pixels sharing common properties of local signal dynamics. After introducing the theoretical concept of minimal free energy vector quantization and related clustering techniques, we discuss its potential to serve as a multi-purpose computer vision strategy to image time-series analysis and visualization for many fields of medicine ranging from biomedical basic research to clinical assessment of patient data. In particular, we present applications to (i) functional MRI data analysis for human brain mapping, (ii) dynamic contrast-enhanced perfusion MRI for the diagnosis of cerebrovascular disease, and (iii) magnetic resonance mammography for the analysis of suspicious lesions in patients with breast cancer. This wide scope of completely different medical applications illustrates the flexibility and conceptual power of neural network vector quantization in this context. Although there are obvious methodological similarities, each application requires specific careful consideration w.r.t. data preprocessing, postprocessing and interpretation. This challenge can only be managed by close interdisciplinary cooperation of medical doctors, engineers, and computer scientists. Hence, this field of research can serve as an example for lively cross-fertilization between computer vision and related research.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anderberg, M.R. (Ed.). 1973. Cluster Analysis for Applications. Academic Press: New York.
Axel, L. 1980. Cerebral blood flow determination by rapid-sequence computed tomography. Radiology, 137:679–686.
Bandettini, P.A., Jesmanowicz, A., Wong, E.C., and Hyde, J.S. 1993. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med., 30:161–173.
Baumgartner, R., Windischberger, C., and Moser, E. 1998. Quantification in functional magnetic resonance imaging: Fuzzy clustering vs. correlation analysis. Magnetic Resonance Imaging, 16(2):115–125.
Becker, S. 1996. Mutal information maximization: Models of cortical self-organization. Network, 7:7–31.
Bell, A.J. and Sejnowski, T.J. 1995. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7:1129–1159.
Bezdek, J.C. 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press: New York.
Bishop, C.M., Svensen, M., and Williams, C.K.I. 1998a. Developments of the generative topographic mapping. Technical Report NCRG-98-012, Neural Computing Research Group, Aston University, Birmingham.
Bishop, C.M., Svensen, M., and Williams, C.K.I. 1998b. GTM: The generative topographic mapping. Neural Computation, 10(1):215–234.
Chuang, K.H., Chiu, M.J., Lin, C.C., and Chen, J.H. 1999. Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy c-means. IEEE Transactions on Medical Imaging, 18(12):1117–1128.
Dempster, A.P., Laird, N.M., and Rubin, D.B. 1977. Maximum likelihood from incomplete data via the EMalgorithm. J. Royal. Statist. Soc. Ser. B (methodological), 39:1–38.
Dersch, D.R. 1996. Eigenschaften neuronaler Vektorquantisierer und ihre Anwendung in der Sprachverarbeitung. Verlag Harri Deutsch, Reihe Physik, Bd. 54, Thun, Frankfurt am Main. ISBN 3-8171-1492-3.
Dersch, D.R., Albrecht, S., and Tavan, P. 1996. Hierarchical fuzzy clustering. In Symposion über biologische Informationsver-arbeitung und Neuronale Netze – SINN’ 95, Konferenzband, A. Wismüller and D.R. Dersch (Eds.). Hanns-Seidel-Stiftung, München.
Dersch, D.R. and Tavan, P. 1994a. Control of annealing in minimal free energy vector quantization. In Proceedings of the IEEE International Conference on Neural Networks ICNN'94, Orlando, Florida, pp. 698–703.
Dersch, D.R. and Tavan, P. 1994b. Load balanced vector quantization. In Proceedings of the International Conference on Artificial Neural Networks ICANN, Springer, pp. 1067–1070.
Dersch, D.R. and Tavan, P. 1995. Asymptotic level density in topological feature maps. IEEE Transactions on Neural Networks, 6(1):230–236.
Ding, X., Masaryk, T., Ruggieri, P., and Tkach, J. 1996. Detection of activation patterns in dynamic functional MRI with a clustering technique. In Proc., SMR, 4th Annual Meeting, New York, p. 1798.
Ding, X., Tkach, J., Ruggieri, P., and Masaryk, T. 1994. Analysis of time-course functional mri data with clustering method without use of reference signal. In Proc., SMR, 2nd Annual Meeting, San Francisco, p. 630.
Duda, R.O. and Hart, P.E. 1973. Pattern Classification and Scene Analysis. Wiley: New York.
Erwin, E., Obermayer, K., and Schulten, K. 1992a. Self-organizing maps: Ordering, convergence properties, and energy functions. Biological Cybernetics, 61:47–55.
Erwin, E., Obermayer, K., and Schulten, K. 1992b. Self-organizing maps: Stationary states, metastability, and convergence rate. Biological Cybernetics, 61:35–45.
Fischer, H. and Hennig, J. 1999. Neural-network based analysis of MR time series. Magn. Reson. Med., 41(1):124–131.
Forgy, E.W. 1965. Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics, 21:768.
Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A., and Noll, D.C. 1995. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magn. Reson. Med., 33:636–647.
Galicki, M., Möller, U., and Witte, H. 1997. Neural clustering networks based on global optimisation of prototypes in metric spaces. Neural Computing and Applications, 5:2–13.
Golay, X., Kollias, S., Meier, D., and Boesinger, P. 1996. Optimization of a fuzzy clustering technique and comparison with conventional post processing methods in fMRI. In Proc., SMR, 4th Annual Meeting, New York, p. 1787.
Goutte, C., Toft, P., Rostrup, E., Nielsen, F.A., and Hansen, L.K. 1999. On clustering fMRI time series. Neuroimage, 9:298–310.
Graepel, T., Burger, M., and Obermayer, K. 1997. Phase transitions in stachastic self-organizing maps. Physical Review E, 56(4):3876–3890.
Graepel, T., Burger, M., and Obermayer, K. 1998. Self-organizing maps: Generalizations and new optimization techniques. Neuro-computing, 20:173–190.
Hyvärinen, A. 1999. Survey on independent component analysis. Neural Computing Surveys, 2:94–128.
Kloppenburg, M. 1996. Lokale Hauptkomponentenanalyse in hoch-dimensionalen Merkmalsräumen—Methoden zur Datenreduktion. Diplomarbeit, Ludwig-Maximilians-Universität, München.
Kloppenburg, M. and Tavan, P. 1997. Deterministic annealing for density estimation by multivariate normal mixtures. Phys. Rev. E, 55:2089–2092.
Kohonen, T. 1989. Self-Organisation and Associative Memory. Springer: Berlin.
Kohonen, T. 1990. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480.
Kohonen, T., Hynninen, J., Kangas, J., and Laaksonen, J. 1996. SOM PAK: The self-organizing map program package. Helsinki University of Technology, Laboratory of Computer and Information Science, Rakentajanaukio 2 C, SF-02150 Espoo, Finland.
Linde, Y., Buzo, A., and Gray, R.M. 1980. An algorithm for vector quantizer design. IEEE Transactions on Communications, 28:84–95.
Martinetz, T.M. and Schulten, K. 1991. A'neural gas’ network learns topologies. In Proceedings of the International Conference on Artificial Neural Networks ICANN, Elsevier Science Publishers: Amsterdam, pp. 397–402.
Martinetz, T.M. and Schulten, K. 1994. Topology representing networks. Neural Networks, 7:507–522.
Milligan, G.W. and Cooper, M.C. 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50:159–179.
Moser, E., Teichtmeister, C., and Diemling, M. 1996. Reproducibility and postprocessing of gradient echo functional MRI to improve localization of brain activity in the human visual cortex. Magnetic Resonance Imaging, 14:567–579.
Ogawa, S., Lee, T., Kay, A.R., and Tank, D.W. 1990. Brain magnetic-resonance-imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA, 87(24):9868–9872.
Østergaard, L., Weisskopf, R.M., Chesler, D.A., Gyldensted, C., and Rosen, B.R. 1996. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn. Res. Med., 36:715–725.
Ritter, H. 1991. Asymptotic level density for a class of vector quantization processes. IEEE Transactions on Neural Networks, 1(2):173–175.
Ritter, H., Martinetz, T., and Schulten, K. 1991a. Neural Networks. Addison Wesley: New York.
Ritter, H., Martinetz, T., and Schulten, K. 1991b. Neuronale Netze. Addison Wesley: New York.
Rose, K., Gurewitz, E., and Fox, G. 1990. A deterministic annealing approach to clustering. Pattern Recognition Letters, 11(11):589–594.
Rose, K., Gurewitz, E., and Fox, G.C. 1992. Vector quantization by deterministic annealing. IEEE Transactions on Information Theory, 38(4):1249–1257.
Rosen, B.R., Belliveau, J.W., Vevea, J.M., and Brady, T.J. 1990. Perfusion imaging with NMR contrast agents. Magn. Reson. Med., 14:249–265.
Sammon, J.W. 1969. Anonlinear mapping for data structure analysis. IEEE Transactions on Computers, C 18:401–409.
Scarth, G., McIntyre, M., Wowk, B., and Somorjai, R.L. 1995. Detection of novelty in functional images using fuzzy clustering. In Proc., SMR, 3rd Annual Meeting, Nice, p. 238.
Scarth, G., Moser, E., Baumgartner, R., Alexander M., and Somorjai, R.L. 1996. Paradigm-free fuzzy clustering-detected activations in fMRI: A case study. In Proc., SMR, 4th Annual Meeting, New York, p. 1784.
Weisskoff, R. 1998. Personal communication.
Willshaw, D.J. and vonder Malsburg, C. 1976. How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society, London, B 194:431–445.
Wismüller, A. and Dersch, D.R. 1997. Neural network computation in biomedical research: Chances for conceptual cross-fertilization. Theory in Biosciences, 116(3):229–240.
Wismüller, A., Dersch, D.R., Lipinski, B., Hahn, K., and Auer, D. 1998a. Hierarchical clustering of fMRI time-series by deterministic annealing. Neuroimage, 7(4):S593.
Wismüller, A., Dersch, D.R., Lipinski, B., Hahn, K., and Auer, D. 1998b. Hierarchical unsupervised clustering of fMRI data by deterministic annealing. In Proceedings of the Sixth Scientific Meeting of the International Society of Magnetic Resnonace in Medicine 1998, Sydney, p. 412.
Wismüller, A., Dersch, D.R., Lipinski, B., Hahn, K., and Auer, D. 1998c. A neural network approach to functional MRI pattern analysis—clustering of time-series by hierarchical vector quantization. In ICANN'98—Proceedings of the 8th International Conference on Artificial Neural Networks, Skövde, Sweden. Perspectives in Neural Computing, vol. 2, L. Niklasson, M. Bodèn, and T. Ziemke (Eds.). Springer-Verlag: London, Berlin, New York, pp. 123–128.
Wismüller, A., Vietze, F., and Dersch, D.R. 2000. Segmentation with neural networks. In Handbook of Medical Imaging, I. Bankman, R. Rangayyan, A. Evans, R. Woods, E. Fishman, and H. Huang (Eds.). Johns Hopkins University, Baltimore, Academic Press: NewYork. ISBN 0120777908.
Wismüller, A., Vietze, F., Dersch, D.R., Hahn, K., and Ritter, H. 1998. The deformable feature map—adaptive plasticity in function approximation. In ICANN'98—Proceedings of the 8th International Conference on Artificial Neural Networks, Skövde, Sweden. Perspectives in Neural Computing, vol. 1, L. Niklasson, M. Bodèn, and T. Ziemke (Eds.). Springer-Verlag: London, Berlin, New York, pp. 222–227.
Woods, R.P., Cherry, S.R., and Mazziotta, J.C. 1992. Rapid automated algorithm for aligning and reslicing PET images. Journal of Computer Assisted Tomography, 16:620–633.
Zierler, K.L. 1965. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ. Res., 16:393–407.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Wismüller, A., Lange, O., Dersch, D.R. et al. Cluster Analysis of Biomedical Image Time-Series. International Journal of Computer Vision 46, 103–128 (2002). https://doi.org/10.1023/A:1013550313321
Issue Date:
DOI: https://doi.org/10.1023/A:1013550313321