Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cluster Analysis of Biomedical Image Time-Series

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper, we present neural network clustering by deterministic annealing as a powerful strategy for self-organized segmentation of biomedical image time-series data identifying groups of pixels sharing common properties of local signal dynamics. After introducing the theoretical concept of minimal free energy vector quantization and related clustering techniques, we discuss its potential to serve as a multi-purpose computer vision strategy to image time-series analysis and visualization for many fields of medicine ranging from biomedical basic research to clinical assessment of patient data. In particular, we present applications to (i) functional MRI data analysis for human brain mapping, (ii) dynamic contrast-enhanced perfusion MRI for the diagnosis of cerebrovascular disease, and (iii) magnetic resonance mammography for the analysis of suspicious lesions in patients with breast cancer. This wide scope of completely different medical applications illustrates the flexibility and conceptual power of neural network vector quantization in this context. Although there are obvious methodological similarities, each application requires specific careful consideration w.r.t. data preprocessing, postprocessing and interpretation. This challenge can only be managed by close interdisciplinary cooperation of medical doctors, engineers, and computer scientists. Hence, this field of research can serve as an example for lively cross-fertilization between computer vision and related research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anderberg, M.R. (Ed.). 1973. Cluster Analysis for Applications. Academic Press: New York.

    Google Scholar 

  • Axel, L. 1980. Cerebral blood flow determination by rapid-sequence computed tomography. Radiology, 137:679–686.

    Google Scholar 

  • Bandettini, P.A., Jesmanowicz, A., Wong, E.C., and Hyde, J.S. 1993. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med., 30:161–173.

    Google Scholar 

  • Baumgartner, R., Windischberger, C., and Moser, E. 1998. Quantification in functional magnetic resonance imaging: Fuzzy clustering vs. correlation analysis. Magnetic Resonance Imaging, 16(2):115–125.

    Google Scholar 

  • Becker, S. 1996. Mutal information maximization: Models of cortical self-organization. Network, 7:7–31.

    Google Scholar 

  • Bell, A.J. and Sejnowski, T.J. 1995. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7:1129–1159.

    Google Scholar 

  • Bezdek, J.C. 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press: New York.

    Google Scholar 

  • Bishop, C.M., Svensen, M., and Williams, C.K.I. 1998a. Developments of the generative topographic mapping. Technical Report NCRG-98-012, Neural Computing Research Group, Aston University, Birmingham.

    Google Scholar 

  • Bishop, C.M., Svensen, M., and Williams, C.K.I. 1998b. GTM: The generative topographic mapping. Neural Computation, 10(1):215–234.

    Google Scholar 

  • Chuang, K.H., Chiu, M.J., Lin, C.C., and Chen, J.H. 1999. Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy c-means. IEEE Transactions on Medical Imaging, 18(12):1117–1128.

    Google Scholar 

  • Dempster, A.P., Laird, N.M., and Rubin, D.B. 1977. Maximum likelihood from incomplete data via the EMalgorithm. J. Royal. Statist. Soc. Ser. B (methodological), 39:1–38.

    Google Scholar 

  • Dersch, D.R. 1996. Eigenschaften neuronaler Vektorquantisierer und ihre Anwendung in der Sprachverarbeitung. Verlag Harri Deutsch, Reihe Physik, Bd. 54, Thun, Frankfurt am Main. ISBN 3-8171-1492-3.

  • Dersch, D.R., Albrecht, S., and Tavan, P. 1996. Hierarchical fuzzy clustering. In Symposion über biologische Informationsver-arbeitung und Neuronale Netze – SINN’ 95, Konferenzband, A. Wismüller and D.R. Dersch (Eds.). Hanns-Seidel-Stiftung, München.

    Google Scholar 

  • Dersch, D.R. and Tavan, P. 1994a. Control of annealing in minimal free energy vector quantization. In Proceedings of the IEEE International Conference on Neural Networks ICNN'94, Orlando, Florida, pp. 698–703.

  • Dersch, D.R. and Tavan, P. 1994b. Load balanced vector quantization. In Proceedings of the International Conference on Artificial Neural Networks ICANN, Springer, pp. 1067–1070.

  • Dersch, D.R. and Tavan, P. 1995. Asymptotic level density in topological feature maps. IEEE Transactions on Neural Networks, 6(1):230–236.

    Google Scholar 

  • Ding, X., Masaryk, T., Ruggieri, P., and Tkach, J. 1996. Detection of activation patterns in dynamic functional MRI with a clustering technique. In Proc., SMR, 4th Annual Meeting, New York, p. 1798.

  • Ding, X., Tkach, J., Ruggieri, P., and Masaryk, T. 1994. Analysis of time-course functional mri data with clustering method without use of reference signal. In Proc., SMR, 2nd Annual Meeting, San Francisco, p. 630.

  • Duda, R.O. and Hart, P.E. 1973. Pattern Classification and Scene Analysis. Wiley: New York.

    Google Scholar 

  • Erwin, E., Obermayer, K., and Schulten, K. 1992a. Self-organizing maps: Ordering, convergence properties, and energy functions. Biological Cybernetics, 61:47–55.

    Google Scholar 

  • Erwin, E., Obermayer, K., and Schulten, K. 1992b. Self-organizing maps: Stationary states, metastability, and convergence rate. Biological Cybernetics, 61:35–45.

    Google Scholar 

  • Fischer, H. and Hennig, J. 1999. Neural-network based analysis of MR time series. Magn. Reson. Med., 41(1):124–131.

    Google Scholar 

  • Forgy, E.W. 1965. Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics, 21:768.

    Google Scholar 

  • Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A., and Noll, D.C. 1995. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magn. Reson. Med., 33:636–647.

    Google Scholar 

  • Galicki, M., Möller, U., and Witte, H. 1997. Neural clustering networks based on global optimisation of prototypes in metric spaces. Neural Computing and Applications, 5:2–13.

    Google Scholar 

  • Golay, X., Kollias, S., Meier, D., and Boesinger, P. 1996. Optimization of a fuzzy clustering technique and comparison with conventional post processing methods in fMRI. In Proc., SMR, 4th Annual Meeting, New York, p. 1787.

  • Goutte, C., Toft, P., Rostrup, E., Nielsen, F.A., and Hansen, L.K. 1999. On clustering fMRI time series. Neuroimage, 9:298–310.

    Google Scholar 

  • Graepel, T., Burger, M., and Obermayer, K. 1997. Phase transitions in stachastic self-organizing maps. Physical Review E, 56(4):3876–3890.

    Google Scholar 

  • Graepel, T., Burger, M., and Obermayer, K. 1998. Self-organizing maps: Generalizations and new optimization techniques. Neuro-computing, 20:173–190.

    Google Scholar 

  • Hyvärinen, A. 1999. Survey on independent component analysis. Neural Computing Surveys, 2:94–128.

    Google Scholar 

  • Kloppenburg, M. 1996. Lokale Hauptkomponentenanalyse in hoch-dimensionalen Merkmalsräumen—Methoden zur Datenreduktion. Diplomarbeit, Ludwig-Maximilians-Universität, München.

    Google Scholar 

  • Kloppenburg, M. and Tavan, P. 1997. Deterministic annealing for density estimation by multivariate normal mixtures. Phys. Rev. E, 55:2089–2092.

    Google Scholar 

  • Kohonen, T. 1989. Self-Organisation and Associative Memory. Springer: Berlin.

    Google Scholar 

  • Kohonen, T. 1990. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480.

    Google Scholar 

  • Kohonen, T., Hynninen, J., Kangas, J., and Laaksonen, J. 1996. SOM PAK: The self-organizing map program package. Helsinki University of Technology, Laboratory of Computer and Information Science, Rakentajanaukio 2 C, SF-02150 Espoo, Finland.

    Google Scholar 

  • Linde, Y., Buzo, A., and Gray, R.M. 1980. An algorithm for vector quantizer design. IEEE Transactions on Communications, 28:84–95.

    Google Scholar 

  • Martinetz, T.M. and Schulten, K. 1991. A'neural gas’ network learns topologies. In Proceedings of the International Conference on Artificial Neural Networks ICANN, Elsevier Science Publishers: Amsterdam, pp. 397–402.

    Google Scholar 

  • Martinetz, T.M. and Schulten, K. 1994. Topology representing networks. Neural Networks, 7:507–522.

    Google Scholar 

  • Milligan, G.W. and Cooper, M.C. 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50:159–179.

    Google Scholar 

  • Moser, E., Teichtmeister, C., and Diemling, M. 1996. Reproducibility and postprocessing of gradient echo functional MRI to improve localization of brain activity in the human visual cortex. Magnetic Resonance Imaging, 14:567–579.

    Google Scholar 

  • Ogawa, S., Lee, T., Kay, A.R., and Tank, D.W. 1990. Brain magnetic-resonance-imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA, 87(24):9868–9872.

    Google Scholar 

  • Østergaard, L., Weisskopf, R.M., Chesler, D.A., Gyldensted, C., and Rosen, B.R. 1996. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn. Res. Med., 36:715–725.

    Google Scholar 

  • Ritter, H. 1991. Asymptotic level density for a class of vector quantization processes. IEEE Transactions on Neural Networks, 1(2):173–175.

    Google Scholar 

  • Ritter, H., Martinetz, T., and Schulten, K. 1991a. Neural Networks. Addison Wesley: New York.

    Google Scholar 

  • Ritter, H., Martinetz, T., and Schulten, K. 1991b. Neuronale Netze. Addison Wesley: New York.

    Google Scholar 

  • Rose, K., Gurewitz, E., and Fox, G. 1990. A deterministic annealing approach to clustering. Pattern Recognition Letters, 11(11):589–594.

    Google Scholar 

  • Rose, K., Gurewitz, E., and Fox, G.C. 1992. Vector quantization by deterministic annealing. IEEE Transactions on Information Theory, 38(4):1249–1257.

    Google Scholar 

  • Rosen, B.R., Belliveau, J.W., Vevea, J.M., and Brady, T.J. 1990. Perfusion imaging with NMR contrast agents. Magn. Reson. Med., 14:249–265.

    Google Scholar 

  • Sammon, J.W. 1969. Anonlinear mapping for data structure analysis. IEEE Transactions on Computers, C 18:401–409.

    Google Scholar 

  • Scarth, G., McIntyre, M., Wowk, B., and Somorjai, R.L. 1995. Detection of novelty in functional images using fuzzy clustering. In Proc., SMR, 3rd Annual Meeting, Nice, p. 238.

  • Scarth, G., Moser, E., Baumgartner, R., Alexander M., and Somorjai, R.L. 1996. Paradigm-free fuzzy clustering-detected activations in fMRI: A case study. In Proc., SMR, 4th Annual Meeting, New York, p. 1784.

  • Weisskoff, R. 1998. Personal communication.

  • Willshaw, D.J. and vonder Malsburg, C. 1976. How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society, London, B 194:431–445.

    Google Scholar 

  • Wismüller, A. and Dersch, D.R. 1997. Neural network computation in biomedical research: Chances for conceptual cross-fertilization. Theory in Biosciences, 116(3):229–240.

    Google Scholar 

  • Wismüller, A., Dersch, D.R., Lipinski, B., Hahn, K., and Auer, D. 1998a. Hierarchical clustering of fMRI time-series by deterministic annealing. Neuroimage, 7(4):S593.

    Google Scholar 

  • Wismüller, A., Dersch, D.R., Lipinski, B., Hahn, K., and Auer, D. 1998b. Hierarchical unsupervised clustering of fMRI data by deterministic annealing. In Proceedings of the Sixth Scientific Meeting of the International Society of Magnetic Resnonace in Medicine 1998, Sydney, p. 412.

  • Wismüller, A., Dersch, D.R., Lipinski, B., Hahn, K., and Auer, D. 1998c. A neural network approach to functional MRI pattern analysis—clustering of time-series by hierarchical vector quantization. In ICANN'98—Proceedings of the 8th International Conference on Artificial Neural Networks, Skövde, Sweden. Perspectives in Neural Computing, vol. 2, L. Niklasson, M. Bodèn, and T. Ziemke (Eds.). Springer-Verlag: London, Berlin, New York, pp. 123–128.

    Google Scholar 

  • Wismüller, A., Vietze, F., and Dersch, D.R. 2000. Segmentation with neural networks. In Handbook of Medical Imaging, I. Bankman, R. Rangayyan, A. Evans, R. Woods, E. Fishman, and H. Huang (Eds.). Johns Hopkins University, Baltimore, Academic Press: NewYork. ISBN 0120777908.

    Google Scholar 

  • Wismüller, A., Vietze, F., Dersch, D.R., Hahn, K., and Ritter, H. 1998. The deformable feature map—adaptive plasticity in function approximation. In ICANN'98—Proceedings of the 8th International Conference on Artificial Neural Networks, Skövde, Sweden. Perspectives in Neural Computing, vol. 1, L. Niklasson, M. Bodèn, and T. Ziemke (Eds.). Springer-Verlag: London, Berlin, New York, pp. 222–227.

    Google Scholar 

  • Woods, R.P., Cherry, S.R., and Mazziotta, J.C. 1992. Rapid automated algorithm for aligning and reslicing PET images. Journal of Computer Assisted Tomography, 16:620–633.

    Google Scholar 

  • Zierler, K.L. 1965. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ. Res., 16:393–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wismüller, A., Lange, O., Dersch, D.R. et al. Cluster Analysis of Biomedical Image Time-Series. International Journal of Computer Vision 46, 103–128 (2002). https://doi.org/10.1023/A:1013550313321

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013550313321