Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Simulations of Time-Dependent Flows of Viscoelastic Fluids with Spectral Element Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents the application of spectral element methods to simulate the time-dependent flow of viscoelastic fluids in non-trivial geometries using a closed-form differential constitutive equation. As an example, results relative to the flow of a FENE-CR fluid in a two-dimensional four-to-one contraction are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bodart, C., and Crochet, M. J. (1993). Time-dependent numerical simulation of viscoelastic flow and stability. Theoret. Comput. Fluid Dynamics 5, 57–75.

    Google Scholar 

  2. Chauvière, C., and Owens, R. G. (2000). How accurate is your solution? Error indicators for viscoelastic flow calculations. J. Non-Newtonian Fluid Mech. 95, 1–33.

    Google Scholar 

  3. Chilcott, M. D., and Rallison, J. M. (1988). Creeping flow of dilute polymer solutions past cylinders and spheres. J. Non-Newtonian Fluid Mech. 29, 381–432. 4._ Couzy, W. (1995). Spectral Element Discretization of the Unsteady Navier–Stokes Equations and its Iterative Solution on Parallel Computers, Ph.D. thesis, No. 1380, Ecole Polytechnique Fédérale de Lausanne.

    Google Scholar 

  4. Couzy, W.(1995). Spectral Element Discretization of the Unsteady Navier–Stokes Equations and its Iterative Solution on Parallel Computers ,Ph.D. thesis, No.1380, Ecole Polytechnique Fédérale de Lausanne.

  5. Deville, M. O., Fischer, P. F., and Mund, E. H. (2002). High-Order Methods for Incompressible Fluid Flow, Cambridge University Press, New York.

    Google Scholar 

  6. Dubois-Pèlerin, Y., Van Kemenade, V., and Deville, M. O. (1999). An object-oriented toolbox for spectral element analysis. J. Sci. Comput. 14, 1–29.

    Google Scholar 

  7. Fiétier, N., and Deville, M. O. (2000). Spectral Element Methods for Unsteady Viscoelastic Flows, Proc. of the 16th IMACS World Congress, Session 129–3B, Swiss Federal Institute of Technology, Lausanne, Switzerland.

    Google Scholar 

  8. Fiétier, N., and Deville, M. O. Time-dependent algorithms for the simulation of viscoelastic flows with spectral element methods: Applications and stability. Submitted to J. Comput. Phys.

  9. Fiétier, N., and Deville, M. O. Linear stability analysis of time-dependent algorithms with spectral element methods for the simulation of viscoelastic flows (in preparation).

  10. El Hadj, M., and Tanguy, P. A. (1990). A finite element procedure coupled with the method of characteristics for simulation of viscoelastic fluid flow. J. Non-Newtonian Fluid Mech. 36, 333–349.

    Google Scholar 

  11. Van Kemenade, V., and Deville, M. O. (1994). Application of spectral elements to viscoelastic creeping flows. J. Non-Newtonian Fluid Mech. 51, 277–308.

    Google Scholar 

  12. McKinley, G. H., Raiford, W. P., Brown, R. A., and Armstrong, R. C. (1991). Nonlinear dynamics of viscoelastic flow in axisymmetric abrupt contractions. J. Fluid Mech. 223, 411–456.

    Google Scholar 

  13. Mullen, J. S., and Fischer, P. F. (1999). Filtering techniques for complex geometry fluid flows. Commun. Numer. Meth. Engng. 15, 9–18.

    Google Scholar 

  14. Smith, M. D., Armstrong, R. C., Brown, R. A., and Sureshkumar, R. (2000). Finite element analysis of stability of two-dimensional viscoelastic flows to three-dimensional perturbations. J. Non-Newtonian Fluid Mech. 93, 203–244.

    Google Scholar 

  15. Weill, D., and Deville, M. O. (2002). Steady gap flows by spectral and mortar element methods. J. Sci. Comput. 17, 639–648.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiétier, N., Deville, M.O. Simulations of Time-Dependent Flows of Viscoelastic Fluids with Spectral Element Methods. Journal of Scientific Computing 17, 649–657 (2002). https://doi.org/10.1023/A:1015135016765

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015135016765