Abstract
The standard parse tree representation of genetic programming, while a good choice from a generative viewpoint, does not capture the variational demands of evolution. This paper addresses the issue of whether representations in genetic programming might be improved by mimicry of biological behaviors, particularly those thought to be important in the evolution of metabolic pathways, the ‘computational’ structures of the cell. This issue is broached through a presentation of enzyme genetic programming, a form of genetic programming which uses a biomimetic representation. Evaluation upon problems in combinational logic design does not show any significant performance advantage over other approaches, though does demonstrate a number of interesting behaviors including the preclusion of bloat.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
L. Altenberg, “Emergent phenomena in genetic programming,” in Evolutionary Programming– Proc. Third Annual Conf., A. V. Sebald and L. J. Fogel (eds.), World Scientific Publishing, 1994a, pp. 233–241.
L. Altenberg, “The evolution of evolvability in genetic programming,” in Advances in Genetic Programming. K. Kinnear, Jr (ed.), MIT Press, 1994b.
P. Angeline, “Subtree crossover: Building block engine or macromutation?” in Genetic Programming 1997: Proc. Second Annual Conf., J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo (eds.), GP97, Morgan Kaufmann, 1997, pp. 240–248.
P. Angeline, “Multiple interacting programs: A representation for evolving complex behaviors,” Cybernetics and Systems, vol. 29, no. 8, pp. 779–806, 1998.
W. Banzhaf, “Genotype-phenotype mapping and neutral variation–A case study in Genetic Programming,” in Proc. Parallel Problem Solving from Nature III, Y. Davidor, H.-P. Schwefel, and R. Manner (eds.), Springer-Verlag, 1998.
L. Baranett, “Netcrawling–Optimal evolutionary search with neutral networks,” in Proc. 2001 Congress on Evolutionary Computation, J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu (eds.), IEEE Press, 2001, pp. 30–37.
T. Blickle and L. Thiele, “Genetic programming and redundancy,” in Genetic Algorithms Within the Framework of Evolutionary Computation (Workshop at KI-94, Saarbrücken), J. Hopf (ed.), Max-Planck-Institut für Informatik, 1994, pp. 33–38.
D. Bray, “Protein molecules as computational elements in living cells,” Nature, vol. 376, pp. 307–312, 1995.
T. A. Brown and A. Brown, Genomes, Wiley, 1999.
M. Capstick, W. P. L. Marnane, and R. Pethig, “Biological computational building blocks,” IEEE Computer, vol. 25, no. 11, pp. 22–29, 1992.
C. A. Coello, A. D. Christiansen, and A. Hernández Aguirre, “Use of evolutionary techniques to automate the design of combinational circuits,” Internat. J. Smart Engineering System Design, vol. 2, no. 4, pp. 299–314, 2000.
M. Conrad, “Molecular computing: The lock-key paradigm,” IEEE Computer, vol. 25, no. 11, pp. 11–20, 1992.
M. Ebner, P. Langguth, J. Albert, M. Shackleton, and R. Shipman, “On neutral networks and evolvability,” in Proc. 2001 Congress on Evolutionary Computation, J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu (eds.), IEEE Press, 2001, pp. 1–8.
C. Ferreira, “Gene expression programming: A newadaptive algorithm for solving problems,” Complex Systems, vol. 13, no. 2, pp. 87–129, 2001.
M. J. Fisher, R. C. Paton, and K. Matsuno, “Intracellular signalling proteins as ‘smart’ agents in parallel distributed processes,” BioSystems, vol. 50, pp. 159–171, 1999.
D. E. Goldberg, K. Deb, H. Kargupta, and H. George, “Rapid accurate optimization of difficult problems using fast messy genetic algorithms,” in Proc. Fifth Internat. Conf. Genetic Algorithms, S. Forrest (ed.), Morgan Kaufmann, 1993.
T. Jones, “Evolutionary algorithms, fitness landscapes and search,” Ph. D. Thesis, The University of New Mexico, 1995.
H. Kargupta, “SEARCH, computational processes in evolution, and preliminary development of the gene expression messy genetic algorithm,” J. of Complex Systems, vol. 11, no. 4, pp. 233–287, 1999.
H. Kargupta, “A striking property of genetic code-like transformations,” Complex Systems J., vol. 13, no. 1, pp. 1–32, 2001.
R. Keller and W. Banzhaf, “The evolution of genetic code in genetic programming,” in Proc. Genetic and Evolutionary Computation Conf., W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith (eds.), Morgan Kaufmann, 1999.
P. J. Kennedy and T. R. Osborn, “Operon Expression and Regulation with Spiders,” in Proc. 2000 Genetic and Evolutionary Computation Conf. Workshop Program, D. Whitley, D. Goldberg, and E. Cantu-Paz (eds.), 2000, pp. 161–166.
M. Kimura, The Neutral Theory of Molecular Evolution, Cambridge University Press, 1983.
J. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, 1992.
J. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press, 1994.
W. Langdon and R. Poli, “Why ‘building blocks’ don't work on parity problems,” Technical Report CSRP-98-17, School of Computer Science, University of Birmingham, 1998.
W. B. Langdon, “Quadratic bloat in genetic programming,” in Proc. 2000 Genetic and Evolutionary Computation Conf., D. Whitley, D. Goldberg, and E. Cantu-Paz (eds.), Morgan Kaufmann, 2000a, pp. 451–458.
W. B. Langdon, “Size fair and homologous tree genetic programming crossovers,” Genetic Programming and Evolvable Machines, vol. 1, no. 1/2, pp. 95–119, 2000b.
W. B. Langdon and R. Poli, “Fitness causes bloat,” in Soft Computing in Engineering Design and Manufacturing, P. K. Chawdhry, R. Roy, and R. K. Pant (eds.), Springer, 1997, pp. 13–22.
B. Lewin, Genes VII, Oxford University Press, 2000.
M. A. Lones and A. M. Tyrrell, “Biomimetic representation in genetic programming,” in Proc. 2001 Genetic and Evolutionary Computation Conf.,Workshop Program, Computation in Gene Expression Workshop, H. Kargupta (ed.), 2001a, pp. 199–204.
M. A. Lones and A. M. Tyrrell, “Enzyme genetic programming,” in Proc. 2001 Congress on Evolutionary Computation, J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu (eds.), IEEE Press, 2001b, vol. 2, pp. 1183–1190.
M. A. Lones and A. M. Tyrrell, “Crossover and Bloat in the Functionality Model of Enzyme Genetic Programming,” to appear in the Proc. Congress on Evolutionary Computation 2002 (CEC2002), 2002.
S. Luke, S. Hamahashi, and H. Kitano, “Genetic Programming,” in Proc. Genetic and Evolutionary Computation Conf. (GECCO'99), W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith (eds.), Morgan Kaufmann, 1999.
G. Michal, Biochemical Pathways, John Wiley and Sons, Inc.: NewYork, 1999.
J. Miller and P. Thomson, “Cartesian genetic programming,” in Third European Conf. Genetic Programming, R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty (eds.), vol. 1802 of Lecture Notes in Computer Science, Springer, 2000.
J. F. Miller, D. Job, and V. K. Vasilev, “Principles in the evolutionary design of digital circuits–Part I,” Genetic Programming and Evolvable Machines, vol. 1, pp. 7–36, 2000.
M. Moore, “When the junk isn't junk,” Nature, vol. 379, pp. 402–403, 1996.
P. Nordin and W. Banzhaf, “Complexity compression and evolution,” in Genetic Algorithms: Proc. Sixth Internat. Conf. (ICGA95), L. Eshelman (ed.), Morgan Kaufmann: San Fransisco, 1995, pp. 310–317.
P. Nordin, F. Francone, and W. Banzhaf, “Explicitly defined introns and destructive crossover in genetic programming,” in Advances in Genetic Programming 2, P. Angeline and K. Kinnear, Jr. (eds.), MIT Press: Cambridge, 1996 chap. 6, pp. 111–134.
R. Poli, “Evolution of graph-like programs with parallel distributed genetic programming,” in Proc. Seventh Internat. Conf. Genetic Algorithms, T. Bäck (ed.), Morgan Kaufmann, 1997, pp. 346–353.
V. Reddy, M. Mavrovouniotis, and M. Liebman, “Petri net representations in metabolic pathways,” in Proc. First Internat. Conf. Intelligent Systems for Molecular Biology, L. Hunter (ed.), MIT Press, 1993.
C. Ryan, J. J. Collins, and M. O'Neill, “Grammatical evolution: Evolving programs for an arbitrary language,” in First European Workshop on Genetic Programming, W. Banzhaf (ed.), vol. 1391 of Lecture Notes in Computer Science, Springer, 1998.
M. Shackleton and C. Winter, “A computational architecture based on cellular processing,” in Proc. Internat. Conf. Information Processing in Cells and Tissues (IPCAT'97), M. Holcombe and R. Paton (eds.), Plenum Press, 1997.
R. Shipman, M. Shackleton, and I. Harvey, “The use of neutral genotype-phenotype mappings for improved evolutionary search,” BT Technology J., vol. 18 no. 4, pp. 103–111, 2000.
P. Smith and K. Harries, “Code growth, explicitly defined introns and alternative selection schemes,” Evolutionary Computation, vol. 6, no. 4, pp. 339–360, 1998.
T. Soule, J. A. Foster, and J. Dickinson, “Code growth in genetic programming,” in Genetic Programming 1996: Proc. First Annual Conf., J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (eds.), MIT Press, 1996, pp. 215–213.
W. A. Tackett, “Recombination, selection, and the genetic construction of computer programs,” Ph. D. Thesis, University of Southern California, Electrical Engineering Systems, 1994.
Author information
Authors and Affiliations
Additional information
An erratum to this article can be found at http://dx.doi.org/10.1023/A:1020161122012
Rights and permissions
About this article
Cite this article
Lones, M.A., Tyrrell, A.M. Biomimetic Representation with Genetic Programming Enzyme. Genet Program Evolvable Mach 3, 193–217 (2002). https://doi.org/10.1023/A:1015583926171
Issue Date:
DOI: https://doi.org/10.1023/A:1015583926171