Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Biomimetic Representation with Genetic Programming Enzyme

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2002

Abstract

The standard parse tree representation of genetic programming, while a good choice from a generative viewpoint, does not capture the variational demands of evolution. This paper addresses the issue of whether representations in genetic programming might be improved by mimicry of biological behaviors, particularly those thought to be important in the evolution of metabolic pathways, the ‘computational’ structures of the cell. This issue is broached through a presentation of enzyme genetic programming, a form of genetic programming which uses a biomimetic representation. Evaluation upon problems in combinational logic design does not show any significant performance advantage over other approaches, though does demonstrate a number of interesting behaviors including the preclusion of bloat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. L. Altenberg, “Emergent phenomena in genetic programming,” in Evolutionary Programming– Proc. Third Annual Conf., A. V. Sebald and L. J. Fogel (eds.), World Scientific Publishing, 1994a, pp. 233–241.

  2. L. Altenberg, “The evolution of evolvability in genetic programming,” in Advances in Genetic Programming. K. Kinnear, Jr (ed.), MIT Press, 1994b.

  3. P. Angeline, “Subtree crossover: Building block engine or macromutation?” in Genetic Programming 1997: Proc. Second Annual Conf., J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo (eds.), GP97, Morgan Kaufmann, 1997, pp. 240–248.

  4. P. Angeline, “Multiple interacting programs: A representation for evolving complex behaviors,” Cybernetics and Systems, vol. 29, no. 8, pp. 779–806, 1998.

    Article  MATH  Google Scholar 

  5. W. Banzhaf, “Genotype-phenotype mapping and neutral variation–A case study in Genetic Programming,” in Proc. Parallel Problem Solving from Nature III, Y. Davidor, H.-P. Schwefel, and R. Manner (eds.), Springer-Verlag, 1998.

  6. L. Baranett, “Netcrawling–Optimal evolutionary search with neutral networks,” in Proc. 2001 Congress on Evolutionary Computation, J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu (eds.), IEEE Press, 2001, pp. 30–37.

  7. T. Blickle and L. Thiele, “Genetic programming and redundancy,” in Genetic Algorithms Within the Framework of Evolutionary Computation (Workshop at KI-94, Saarbrücken), J. Hopf (ed.), Max-Planck-Institut für Informatik, 1994, pp. 33–38.

  8. D. Bray, “Protein molecules as computational elements in living cells,” Nature, vol. 376, pp. 307–312, 1995.

    Article  Google Scholar 

  9. T. A. Brown and A. Brown, Genomes, Wiley, 1999.

  10. M. Capstick, W. P. L. Marnane, and R. Pethig, “Biological computational building blocks,” IEEE Computer, vol. 25, no. 11, pp. 22–29, 1992.

    Google Scholar 

  11. C. A. Coello, A. D. Christiansen, and A. Hernández Aguirre, “Use of evolutionary techniques to automate the design of combinational circuits,” Internat. J. Smart Engineering System Design, vol. 2, no. 4, pp. 299–314, 2000.

    Google Scholar 

  12. M. Conrad, “Molecular computing: The lock-key paradigm,” IEEE Computer, vol. 25, no. 11, pp. 11–20, 1992.

    Google Scholar 

  13. M. Ebner, P. Langguth, J. Albert, M. Shackleton, and R. Shipman, “On neutral networks and evolvability,” in Proc. 2001 Congress on Evolutionary Computation, J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu (eds.), IEEE Press, 2001, pp. 1–8.

  14. C. Ferreira, “Gene expression programming: A newadaptive algorithm for solving problems,” Complex Systems, vol. 13, no. 2, pp. 87–129, 2001.

    MathSciNet  Google Scholar 

  15. M. J. Fisher, R. C. Paton, and K. Matsuno, “Intracellular signalling proteins as ‘smart’ agents in parallel distributed processes,” BioSystems, vol. 50, pp. 159–171, 1999.

    Article  Google Scholar 

  16. D. E. Goldberg, K. Deb, H. Kargupta, and H. George, “Rapid accurate optimization of difficult problems using fast messy genetic algorithms,” in Proc. Fifth Internat. Conf. Genetic Algorithms, S. Forrest (ed.), Morgan Kaufmann, 1993.

  17. T. Jones, “Evolutionary algorithms, fitness landscapes and search,” Ph. D. Thesis, The University of New Mexico, 1995.

  18. H. Kargupta, “SEARCH, computational processes in evolution, and preliminary development of the gene expression messy genetic algorithm,” J. of Complex Systems, vol. 11, no. 4, pp. 233–287, 1999.

    MathSciNet  Google Scholar 

  19. H. Kargupta, “A striking property of genetic code-like transformations,” Complex Systems J., vol. 13, no. 1, pp. 1–32, 2001.

    MathSciNet  Google Scholar 

  20. R. Keller and W. Banzhaf, “The evolution of genetic code in genetic programming,” in Proc. Genetic and Evolutionary Computation Conf., W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith (eds.), Morgan Kaufmann, 1999.

  21. P. J. Kennedy and T. R. Osborn, “Operon Expression and Regulation with Spiders,” in Proc. 2000 Genetic and Evolutionary Computation Conf. Workshop Program, D. Whitley, D. Goldberg, and E. Cantu-Paz (eds.), 2000, pp. 161–166.

  22. M. Kimura, The Neutral Theory of Molecular Evolution, Cambridge University Press, 1983.

  23. J. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, 1992.

  24. J. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press, 1994.

  25. W. Langdon and R. Poli, “Why ‘building blocks’ don't work on parity problems,” Technical Report CSRP-98-17, School of Computer Science, University of Birmingham, 1998.

  26. W. B. Langdon, “Quadratic bloat in genetic programming,” in Proc. 2000 Genetic and Evolutionary Computation Conf., D. Whitley, D. Goldberg, and E. Cantu-Paz (eds.), Morgan Kaufmann, 2000a, pp. 451–458.

  27. W. B. Langdon, “Size fair and homologous tree genetic programming crossovers,” Genetic Programming and Evolvable Machines, vol. 1, no. 1/2, pp. 95–119, 2000b.

    Article  MATH  Google Scholar 

  28. W. B. Langdon and R. Poli, “Fitness causes bloat,” in Soft Computing in Engineering Design and Manufacturing, P. K. Chawdhry, R. Roy, and R. K. Pant (eds.), Springer, 1997, pp. 13–22.

  29. B. Lewin, Genes VII, Oxford University Press, 2000.

  30. M. A. Lones and A. M. Tyrrell, “Biomimetic representation in genetic programming,” in Proc. 2001 Genetic and Evolutionary Computation Conf.,Workshop Program, Computation in Gene Expression Workshop, H. Kargupta (ed.), 2001a, pp. 199–204.

  31. M. A. Lones and A. M. Tyrrell, “Enzyme genetic programming,” in Proc. 2001 Congress on Evolutionary Computation, J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu (eds.), IEEE Press, 2001b, vol. 2, pp. 1183–1190.

  32. M. A. Lones and A. M. Tyrrell, “Crossover and Bloat in the Functionality Model of Enzyme Genetic Programming,” to appear in the Proc. Congress on Evolutionary Computation 2002 (CEC2002), 2002.

  33. S. Luke, S. Hamahashi, and H. Kitano, “Genetic Programming,” in Proc. Genetic and Evolutionary Computation Conf. (GECCO'99), W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith (eds.), Morgan Kaufmann, 1999.

  34. G. Michal, Biochemical Pathways, John Wiley and Sons, Inc.: NewYork, 1999.

    Google Scholar 

  35. J. Miller and P. Thomson, “Cartesian genetic programming,” in Third European Conf. Genetic Programming, R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty (eds.), vol. 1802 of Lecture Notes in Computer Science, Springer, 2000.

  36. J. F. Miller, D. Job, and V. K. Vasilev, “Principles in the evolutionary design of digital circuits–Part I,” Genetic Programming and Evolvable Machines, vol. 1, pp. 7–36, 2000.

    Article  MATH  Google Scholar 

  37. M. Moore, “When the junk isn't junk,” Nature, vol. 379, pp. 402–403, 1996.

    Article  Google Scholar 

  38. P. Nordin and W. Banzhaf, “Complexity compression and evolution,” in Genetic Algorithms: Proc. Sixth Internat. Conf. (ICGA95), L. Eshelman (ed.), Morgan Kaufmann: San Fransisco, 1995, pp. 310–317.

    Google Scholar 

  39. P. Nordin, F. Francone, and W. Banzhaf, “Explicitly defined introns and destructive crossover in genetic programming,” in Advances in Genetic Programming 2, P. Angeline and K. Kinnear, Jr. (eds.), MIT Press: Cambridge, 1996 chap. 6, pp. 111–134.

    Google Scholar 

  40. R. Poli, “Evolution of graph-like programs with parallel distributed genetic programming,” in Proc. Seventh Internat. Conf. Genetic Algorithms, T. Bäck (ed.), Morgan Kaufmann, 1997, pp. 346–353.

  41. V. Reddy, M. Mavrovouniotis, and M. Liebman, “Petri net representations in metabolic pathways,” in Proc. First Internat. Conf. Intelligent Systems for Molecular Biology, L. Hunter (ed.), MIT Press, 1993.

  42. C. Ryan, J. J. Collins, and M. O'Neill, “Grammatical evolution: Evolving programs for an arbitrary language,” in First European Workshop on Genetic Programming, W. Banzhaf (ed.), vol. 1391 of Lecture Notes in Computer Science, Springer, 1998.

  43. M. Shackleton and C. Winter, “A computational architecture based on cellular processing,” in Proc. Internat. Conf. Information Processing in Cells and Tissues (IPCAT'97), M. Holcombe and R. Paton (eds.), Plenum Press, 1997.

  44. R. Shipman, M. Shackleton, and I. Harvey, “The use of neutral genotype-phenotype mappings for improved evolutionary search,” BT Technology J., vol. 18 no. 4, pp. 103–111, 2000.

    Article  Google Scholar 

  45. P. Smith and K. Harries, “Code growth, explicitly defined introns and alternative selection schemes,” Evolutionary Computation, vol. 6, no. 4, pp. 339–360, 1998.

    Google Scholar 

  46. T. Soule, J. A. Foster, and J. Dickinson, “Code growth in genetic programming,” in Genetic Programming 1996: Proc. First Annual Conf., J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (eds.), MIT Press, 1996, pp. 215–213.

  47. W. A. Tackett, “Recombination, selection, and the genetic construction of computer programs,” Ph. D. Thesis, University of Southern California, Electrical Engineering Systems, 1994.

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1023/A:1020161122012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lones, M.A., Tyrrell, A.M. Biomimetic Representation with Genetic Programming Enzyme. Genet Program Evolvable Mach 3, 193–217 (2002). https://doi.org/10.1023/A:1015583926171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015583926171