Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Resampling Algorithm for Chaotic Time Series

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In the field of chaotic time series analysis, there is a lack of a distributional theory for the main quantities used to characterize the underlying data generating process (DGP). In this paper a method for resampling time series generated by a chaotic dynamical system is proposed. The basic idea is to develop an algorithm for building trajectories which lie on the same attractor of the true DGP, that is with the same dynamical and geometrical properties of the original data. We performed some numerical experiments on some short noise-free and high-noise series confirming that we are able to correctly reproduce the distribution of the largest finite-time Lyapunov exponent and of the correlation dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bailey B.A., Ellner S., and Nychka D.W. 1997. Chaos with confidence: Asymptotics and applications of local lyapunov exponents. In: D.C. Cutler and D.T. Kaplan (Eds.), Nonlinear Dynamics and Time Series. Building a Bridge Between the Natural and Statistical Sciences. American Mathematical Society, 115-133.

  • Benettin G., Galgagni L., Giorgilli A., and Strelcyn J.M. 1980. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory. Part 2: Numerical application. Meccanica 15: 9-30.

    Google Scholar 

  • Berliner L.M. 1992. Statistics, probability and chaos. Statistical Science 7(1): 69-122.

    Google Scholar 

  • Broomhead D.S. and King G.P. 1986. Extracting qualitative dynamics from experimental data. Physica D 20: 217-236.

    Google Scholar 

  • Brown R., Bryant P., and Abarbanel H.D.I. 1991. Computing the Lyapunov spectrum of a dynamical system from an observed time series. Physical Review A. 43(6): 2787-2806.

    Google Scholar 

  • Bühlmann P. 1997. Sieve bootstrap for time series. Bernoulli 3(2): 123-148.

    Google Scholar 

  • Carlstein E. 1986. The use of subseries values for estimating the variance of a general statistic from a stationary sequence. The Annals of Statistics 14(3): 1171-1179.

    Google Scholar 

  • Carlstein E., Do K., Hall P., Hesterberg T., and Künsch H.R. 1998. Matched block bootstrap for dependent data. Bernoulli 4: 305-328.

    Google Scholar 

  • Casdagli M. 1992. Chaos and deterministic versus stochastic non-linear modeling. The Journal of the Royal Statistical Society B 54(2): 303-328.

    Google Scholar 

  • Conover W.J. 1980. Practical Nonparametric Statistics. Wiley & Sons, New York. second ed., New York.

    Google Scholar 

  • Coomes B.A., Kocak H., and Palmer K.J. 1995. Rigorous computational shadowing of orbits of ordinary differential equation. Numerische Mathematik 69: 401-421.

    Google Scholar 

  • Corless R.M., Essex M., and Nerenberg M.A.H. 1991. Numerical methods can suppress chaos. Physics Letter A 157: 27-36.

    Google Scholar 

  • Corless R.M. 1994. What good are numerical simulations of chaotic dynamical systems? Computers and Mathematics with Applications. An International Journal 28(10–12): 107-121.

    Google Scholar 

  • Coven E.M., Kan I., and Yorke J.A. 1988. Pseudo-orbit shadowing in the family of tent maps. Transaction of the American Mathematical Society 308: 227-241.

    Google Scholar 

  • Cutler C.D. 1993. A review of the theory and estimation of fractal dimension. Technical report series. STAT-93-06. Department of Statistics and Actuarial Science. University of Waterloo-Canada.

  • Dawson S., Grebogi C., Sauer T., and Yorke J.A. 1994. Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Physical Review Letters 73(14): 1927-1930.

    Google Scholar 

  • Diamond P., Kozyakin V., Kloeden P., and Pokrovskii A. 1995. Computer robustness of semi-hyperbolic mappings. Random and Computational Dynamics 3(1–2): 57-70.

    Google Scholar 

  • Eckmann J.P. and Ruelle D. 1985. Ergodic theory of chaos and strange attractors. Reviews of Modern Physics 57: 617-656.

    Google Scholar 

  • Efron E. and Tibshirani R. 1986. Bootstrap method for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1: 54-77.

    Google Scholar 

  • Efron E. and Tibshirani R. 1993. An introduction to the bootstrap. Chapman & Hall, New York.

    Google Scholar 

  • Farmer J.D. and Sidorowich J.J. 1988. Exploiting chaos to predict the future and reduce noise. In: Y.C. Lin (Ed.), Evolution, Learning and Cognition, World Scientific Publishing, 277-330.

  • Fraser A.M. and Swinney H.L. 1986. Independent coordinates for strange attractors from mutual information. Physical Review A 33(2): 1134-1140.

    Google Scholar 

  • Gallant A.R. and White H. 1992. On learning the derivatives of an unknown mapping with multilayer feedforward networks. In: H. White (Ed.), Artificial Neural Networks. Approximation and Learning Theory. Blackwell Publication, Oxford, 206-223.

    Google Scholar 

  • Geist K., Parlitz U., and Lauterborn W. 1990. Comparison of different methods for computing Lyapunov Exponents. Progress of Theoretical Physics 83(5): 875-893.

    Google Scholar 

  • Gencay R. 1996. A statistical framework for testing chaotic dynamics via Lyapunov exponents. Physica D 89: 261-266.

    Google Scholar 

  • Golia S. and Sandri M. 1997. Resampling chaotic time series. Physical Review Letters 78(22): 4197-4201.

    Google Scholar 

  • Grassberger P., Hegger R., Kantz H., Schraffrath C., and Schreiber T. 1993. On noise reduction methods for chaotic data. Chaos 3(2): 127-141.

    Google Scholar 

  • Grassberger P. and Procaccia I. 1983. Measuring the strangeness of strange attractors. Physica D 9: 189-208.

    Google Scholar 

  • Hornik K., Stinchcombe M., and White H. 1992. Multilayer feedforward networks are universal approximators. In: H. White (Ed.), Artificial neural networks. Approximation and Learning Theory. Blackwell Publication. Oxford, pp. 12-28.

    Google Scholar 

  • Kennel M.B., Brown R., and Abarbanel H.D.I. 1992. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A 45(6): 3403-3411.

    Google Scholar 

  • Kloeden P.E. and Palmer K.J. (Eds.), 1994. Chaotic numerics: An international workshop on the approximation and computation of complicated dynamical behavior. July 12–16, 1993. Deakin University. American Mathematical Society. Contemporary Mathematics Series 172.

  • Künsch H.R. 1989. The jackknife and the bootstrap for general stationary observations. The Annals of Statistics 17: 1217-1241.

    Google Scholar 

  • Kurths J., Schwarz U., Witt A., Krampe R.Th., and Abel M. 1995. Measure of complexity in signal analysis. Presented at 3rd Tecnical Conference on Nonlinear Dynamics (Chaos) and Full Spectrum—July 10–13, 1995.

  • Lai D. and Chen G. 1995. Computing the distribution of the Lyapunov exponent from time series: The one-dimensional case study. International Journal of Bifurcation and Chaos 6(5): 1721-1726.

    Google Scholar 

  • Lall U. and Sharma A. 1996. A nearest neighbor bootstrap for resampling hydrologic time series. Water Resources Research 32(3): 679-694.

    Google Scholar 

  • LeBaron B. and Weigend A.S. 1997. A bootstrap evolution of the effect of data splitting in financial time series. Working paper. IS-97-013. Leonard N. Stern School of Bussines, New York University, USA.

    Google Scholar 

  • Lisi F., Nicolis O., and Sandri M. 1995. Combining singular-spectrum analysis and neural networks for time series forecasting. Neural Processing Letters 2(4): 6-10.

    Google Scholar 

  • Lorenz E.N. 1989. Computational chaos—A prelude to computational instability. Physica D. 35: 299-317.

    Google Scholar 

  • McCaffrey D., Ellner S., Gallant R., and Nychka D. 1992. Estimating the Lyapunov exponent of a chaotic system with nonparametric regression. Journal of the American Statistical Association 87(419): 682-695.

    Google Scholar 

  • McCauley J.L. 1994. Chaos, Dynamics, and Fractals: An Algorithmic Approach to Deterministic Chaos. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mozer M.C. 1994. Neural net architectures for temporal sequence processing. In: A.S. Weigend and N.A. Gershenfeld (Eds.), Time Series Prediction: Forecasting the future and understanding the past, Addison-Wesley Publishing Company, pp. 243-264.

  • Nychka D., Ellener S., McCaffrey D., and Gallant A.R. 1992. Finding chaos in noisy systems. Journal of the Royal Statistical Society B. 54(2): 399-426.

    Google Scholar 

  • Oseledec V.I. 1968. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Society. 19: 197-231.

    Google Scholar 

  • Pecora L.M., Carroll T.L., and Heagy J.F. 1997. Statistics for the continuity and differentiability: An application to attractor reconstruction from time series. In: D.C. Cutler and D.T. Kaplan (Eds.), Nonlinear Dynamics and Time Series. Building a Bridge Between the Natural and Statistical Sciences. American Mathematical Society, pp. 49-62.

  • Pilyugin S.Y. and Plamenevskaya O.B. 1999. Shadowing is generic. Topology and its Applications, 93(3): 253-266.

    Google Scholar 

  • Politis D.N. and Romano J.P. 1994. The stationary bootstrap. Journal of the American Statistical Association 89(428): 1303-1313.

    Google Scholar 

  • Reinfelds A. 1997. The shadowing lemma in a metric space. Universitatis Iagellonicae Acta Mathematica 35: 205-210.

    Google Scholar 

  • Rosenstein M.T., Collins J.J., and De Luca C.J. 1993. Apractical method for calculating largest Lyapunov exponent from small data set. Physica D. 65: 117-134.

    Google Scholar 

  • Rosenstein M.T., Collins J.J., and De Luca C.J. 1994. Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D. 73: 82-98.

    Google Scholar 

  • Sauer T., Grebogi C., and Yorke J.A. 1997. How long do numerical chaotic solutions remain valid? Physical Review Letters 79: 59-62.

    Google Scholar 

  • Sauer T. and Yorke J.A. 1991 Rigorous verification of trajectories for the computer simulation of dynamical systems. Nonlinearity 4: 961-979.

    Google Scholar 

  • Simon J.L. and Bruce P. 1993. Probability and statistics with Resampling Stats and Mathematica. The Mathematica Journal 3(1): 48-55.

    Google Scholar 

  • Takens F. 1981. Detecting strange attractors in turbulence. In: D.A. Rand and L.S. Young (Eds.), Dynamical systems and turbulence, Lecture Notes in Mathematics. 898 (Springer-Verlag, Berlino), 366-381.

    Google Scholar 

  • Theiler J., Galdrikian B., Longtin A., Eubank S., and Farmer J.D. 1992. Using surrogate data to detect nonlinearity in time series. In: M. Casdagli and S. Eubank (Eds.), Nonlinear Modeling and Forecasting Addison-Wesley Publishing Company, pp. 163-188.

  • Thimm G. and Fiesler E. 1997. Pruning of neural networks. IDIAP Research Report. IDIAP-RR 97-03. Dalle Molle Institute for Perceptive Artificial Intelligence, Valais, Switzerland.

    Google Scholar 

  • Tong H. 1995. A personal overview of non-linear time series analysis from a chaos perspective. Scandinavian Journal of Statistics 22(4): 399-445.

    Google Scholar 

  • Vautard R., Yiou P., and Ghil M. 1992. Singular-spectrum analysis: A toolkit for short, noisy and chaotic signals. Physica D. 58: 95-16.

    Google Scholar 

  • Yuan C. and Yorke J.A. 2000. An open set of maps for which every point is absolutely nonshadowable. Proceedings of The American Mathematical Society, 128: 909-918.

    Google Scholar 

  • White H. 1992. Some asymptotic results for learning in single hidden layer feedforward networks. In: H. White (Ed.), Artificial Neural Networks. Approximation and Learning Theory. Blackwell Publication. Oxford, 135-157.

    Google Scholar 

  • Ziehmann C., Smith L.A., and Kurths J. 1998. The bootstrap and Lyapunov exponents in deterministic chaos. Physica D, 126: 49-59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golia, S., Sandri, M. A Resampling Algorithm for Chaotic Time Series. Statistics and Computing 11, 241–255 (2001). https://doi.org/10.1023/A:1016652321131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016652321131