Abstract
In the field of chaotic time series analysis, there is a lack of a distributional theory for the main quantities used to characterize the underlying data generating process (DGP). In this paper a method for resampling time series generated by a chaotic dynamical system is proposed. The basic idea is to develop an algorithm for building trajectories which lie on the same attractor of the true DGP, that is with the same dynamical and geometrical properties of the original data. We performed some numerical experiments on some short noise-free and high-noise series confirming that we are able to correctly reproduce the distribution of the largest finite-time Lyapunov exponent and of the correlation dimension.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bailey B.A., Ellner S., and Nychka D.W. 1997. Chaos with confidence: Asymptotics and applications of local lyapunov exponents. In: D.C. Cutler and D.T. Kaplan (Eds.), Nonlinear Dynamics and Time Series. Building a Bridge Between the Natural and Statistical Sciences. American Mathematical Society, 115-133.
Benettin G., Galgagni L., Giorgilli A., and Strelcyn J.M. 1980. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory. Part 2: Numerical application. Meccanica 15: 9-30.
Berliner L.M. 1992. Statistics, probability and chaos. Statistical Science 7(1): 69-122.
Broomhead D.S. and King G.P. 1986. Extracting qualitative dynamics from experimental data. Physica D 20: 217-236.
Brown R., Bryant P., and Abarbanel H.D.I. 1991. Computing the Lyapunov spectrum of a dynamical system from an observed time series. Physical Review A. 43(6): 2787-2806.
Bühlmann P. 1997. Sieve bootstrap for time series. Bernoulli 3(2): 123-148.
Carlstein E. 1986. The use of subseries values for estimating the variance of a general statistic from a stationary sequence. The Annals of Statistics 14(3): 1171-1179.
Carlstein E., Do K., Hall P., Hesterberg T., and Künsch H.R. 1998. Matched block bootstrap for dependent data. Bernoulli 4: 305-328.
Casdagli M. 1992. Chaos and deterministic versus stochastic non-linear modeling. The Journal of the Royal Statistical Society B 54(2): 303-328.
Conover W.J. 1980. Practical Nonparametric Statistics. Wiley & Sons, New York. second ed., New York.
Coomes B.A., Kocak H., and Palmer K.J. 1995. Rigorous computational shadowing of orbits of ordinary differential equation. Numerische Mathematik 69: 401-421.
Corless R.M., Essex M., and Nerenberg M.A.H. 1991. Numerical methods can suppress chaos. Physics Letter A 157: 27-36.
Corless R.M. 1994. What good are numerical simulations of chaotic dynamical systems? Computers and Mathematics with Applications. An International Journal 28(10–12): 107-121.
Coven E.M., Kan I., and Yorke J.A. 1988. Pseudo-orbit shadowing in the family of tent maps. Transaction of the American Mathematical Society 308: 227-241.
Cutler C.D. 1993. A review of the theory and estimation of fractal dimension. Technical report series. STAT-93-06. Department of Statistics and Actuarial Science. University of Waterloo-Canada.
Dawson S., Grebogi C., Sauer T., and Yorke J.A. 1994. Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Physical Review Letters 73(14): 1927-1930.
Diamond P., Kozyakin V., Kloeden P., and Pokrovskii A. 1995. Computer robustness of semi-hyperbolic mappings. Random and Computational Dynamics 3(1–2): 57-70.
Eckmann J.P. and Ruelle D. 1985. Ergodic theory of chaos and strange attractors. Reviews of Modern Physics 57: 617-656.
Efron E. and Tibshirani R. 1986. Bootstrap method for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1: 54-77.
Efron E. and Tibshirani R. 1993. An introduction to the bootstrap. Chapman & Hall, New York.
Farmer J.D. and Sidorowich J.J. 1988. Exploiting chaos to predict the future and reduce noise. In: Y.C. Lin (Ed.), Evolution, Learning and Cognition, World Scientific Publishing, 277-330.
Fraser A.M. and Swinney H.L. 1986. Independent coordinates for strange attractors from mutual information. Physical Review A 33(2): 1134-1140.
Gallant A.R. and White H. 1992. On learning the derivatives of an unknown mapping with multilayer feedforward networks. In: H. White (Ed.), Artificial Neural Networks. Approximation and Learning Theory. Blackwell Publication, Oxford, 206-223.
Geist K., Parlitz U., and Lauterborn W. 1990. Comparison of different methods for computing Lyapunov Exponents. Progress of Theoretical Physics 83(5): 875-893.
Gencay R. 1996. A statistical framework for testing chaotic dynamics via Lyapunov exponents. Physica D 89: 261-266.
Golia S. and Sandri M. 1997. Resampling chaotic time series. Physical Review Letters 78(22): 4197-4201.
Grassberger P., Hegger R., Kantz H., Schraffrath C., and Schreiber T. 1993. On noise reduction methods for chaotic data. Chaos 3(2): 127-141.
Grassberger P. and Procaccia I. 1983. Measuring the strangeness of strange attractors. Physica D 9: 189-208.
Hornik K., Stinchcombe M., and White H. 1992. Multilayer feedforward networks are universal approximators. In: H. White (Ed.), Artificial neural networks. Approximation and Learning Theory. Blackwell Publication. Oxford, pp. 12-28.
Kennel M.B., Brown R., and Abarbanel H.D.I. 1992. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A 45(6): 3403-3411.
Kloeden P.E. and Palmer K.J. (Eds.), 1994. Chaotic numerics: An international workshop on the approximation and computation of complicated dynamical behavior. July 12–16, 1993. Deakin University. American Mathematical Society. Contemporary Mathematics Series 172.
Künsch H.R. 1989. The jackknife and the bootstrap for general stationary observations. The Annals of Statistics 17: 1217-1241.
Kurths J., Schwarz U., Witt A., Krampe R.Th., and Abel M. 1995. Measure of complexity in signal analysis. Presented at 3rd Tecnical Conference on Nonlinear Dynamics (Chaos) and Full Spectrum—July 10–13, 1995.
Lai D. and Chen G. 1995. Computing the distribution of the Lyapunov exponent from time series: The one-dimensional case study. International Journal of Bifurcation and Chaos 6(5): 1721-1726.
Lall U. and Sharma A. 1996. A nearest neighbor bootstrap for resampling hydrologic time series. Water Resources Research 32(3): 679-694.
LeBaron B. and Weigend A.S. 1997. A bootstrap evolution of the effect of data splitting in financial time series. Working paper. IS-97-013. Leonard N. Stern School of Bussines, New York University, USA.
Lisi F., Nicolis O., and Sandri M. 1995. Combining singular-spectrum analysis and neural networks for time series forecasting. Neural Processing Letters 2(4): 6-10.
Lorenz E.N. 1989. Computational chaos—A prelude to computational instability. Physica D. 35: 299-317.
McCaffrey D., Ellner S., Gallant R., and Nychka D. 1992. Estimating the Lyapunov exponent of a chaotic system with nonparametric regression. Journal of the American Statistical Association 87(419): 682-695.
McCauley J.L. 1994. Chaos, Dynamics, and Fractals: An Algorithmic Approach to Deterministic Chaos. Cambridge University Press, Cambridge.
Mozer M.C. 1994. Neural net architectures for temporal sequence processing. In: A.S. Weigend and N.A. Gershenfeld (Eds.), Time Series Prediction: Forecasting the future and understanding the past, Addison-Wesley Publishing Company, pp. 243-264.
Nychka D., Ellener S., McCaffrey D., and Gallant A.R. 1992. Finding chaos in noisy systems. Journal of the Royal Statistical Society B. 54(2): 399-426.
Oseledec V.I. 1968. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Society. 19: 197-231.
Pecora L.M., Carroll T.L., and Heagy J.F. 1997. Statistics for the continuity and differentiability: An application to attractor reconstruction from time series. In: D.C. Cutler and D.T. Kaplan (Eds.), Nonlinear Dynamics and Time Series. Building a Bridge Between the Natural and Statistical Sciences. American Mathematical Society, pp. 49-62.
Pilyugin S.Y. and Plamenevskaya O.B. 1999. Shadowing is generic. Topology and its Applications, 93(3): 253-266.
Politis D.N. and Romano J.P. 1994. The stationary bootstrap. Journal of the American Statistical Association 89(428): 1303-1313.
Reinfelds A. 1997. The shadowing lemma in a metric space. Universitatis Iagellonicae Acta Mathematica 35: 205-210.
Rosenstein M.T., Collins J.J., and De Luca C.J. 1993. Apractical method for calculating largest Lyapunov exponent from small data set. Physica D. 65: 117-134.
Rosenstein M.T., Collins J.J., and De Luca C.J. 1994. Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D. 73: 82-98.
Sauer T., Grebogi C., and Yorke J.A. 1997. How long do numerical chaotic solutions remain valid? Physical Review Letters 79: 59-62.
Sauer T. and Yorke J.A. 1991 Rigorous verification of trajectories for the computer simulation of dynamical systems. Nonlinearity 4: 961-979.
Simon J.L. and Bruce P. 1993. Probability and statistics with Resampling Stats and Mathematica. The Mathematica Journal 3(1): 48-55.
Takens F. 1981. Detecting strange attractors in turbulence. In: D.A. Rand and L.S. Young (Eds.), Dynamical systems and turbulence, Lecture Notes in Mathematics. 898 (Springer-Verlag, Berlino), 366-381.
Theiler J., Galdrikian B., Longtin A., Eubank S., and Farmer J.D. 1992. Using surrogate data to detect nonlinearity in time series. In: M. Casdagli and S. Eubank (Eds.), Nonlinear Modeling and Forecasting Addison-Wesley Publishing Company, pp. 163-188.
Thimm G. and Fiesler E. 1997. Pruning of neural networks. IDIAP Research Report. IDIAP-RR 97-03. Dalle Molle Institute for Perceptive Artificial Intelligence, Valais, Switzerland.
Tong H. 1995. A personal overview of non-linear time series analysis from a chaos perspective. Scandinavian Journal of Statistics 22(4): 399-445.
Vautard R., Yiou P., and Ghil M. 1992. Singular-spectrum analysis: A toolkit for short, noisy and chaotic signals. Physica D. 58: 95-16.
Yuan C. and Yorke J.A. 2000. An open set of maps for which every point is absolutely nonshadowable. Proceedings of The American Mathematical Society, 128: 909-918.
White H. 1992. Some asymptotic results for learning in single hidden layer feedforward networks. In: H. White (Ed.), Artificial Neural Networks. Approximation and Learning Theory. Blackwell Publication. Oxford, 135-157.
Ziehmann C., Smith L.A., and Kurths J. 1998. The bootstrap and Lyapunov exponents in deterministic chaos. Physica D, 126: 49-59.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Golia, S., Sandri, M. A Resampling Algorithm for Chaotic Time Series. Statistics and Computing 11, 241–255 (2001). https://doi.org/10.1023/A:1016652321131
Issue Date:
DOI: https://doi.org/10.1023/A:1016652321131