Abstract
A porous-coated Ti-6Al-4V implant was fabricated by electrical resistance sintering, using 480 μF capacitance and 1.5 kJ input energy. X-ray photoelectron spectroscopy (XPS) was used to study the surface characteristics of the implant material before and after sintering. There were substantial differences in the content of O and N between as-received atomized Ti-6Al-4V powders and the sintered prototype implant, which indicates that electrical resistance sintering alters the surface composition of Ti-6Al-4V. Whereas the surface of atomized Ti-6Al-4V powders was primarily TiO2, the surface of the implant consisted of a complex of titanium oxides as well as small amounts of titanium carbide and nitride. It is proposed that the electrical resistance sintering process consists of five stages: stage I – electronic breakdown of oxide film and heat accumulation at the metal-oxide interface; stage II – physical breakdown of oxide film; stage III – neck formation and neck growth; stage IV – oxidation, nitriding, and carburizing; and stage V – heat dissipation. The fourth stage, during which the alloy repassivates, is responsible for the altered surface composition of the implant.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
K. Okazaki, in “Report to National Science Foundation Novel Research Initiative Grant” (MSN-8610824, May 25, 1987).
K. Okazaki, W. H. Lee, D. K. Kim and R. A. Kopczyk, J. Biomed. Mater. Res. 25 (1991) 1417.
K. Asaoka, N. Kuwayama, O. Okuno and I. Miura, ibid. 19 (1985) 699.
S. Yue, R. M. Pillar and G. C. Weatherly, J. Biomed. Mater. Res. 18 (1984) 1043.
R. M. Pilliar, ibid. 21 (1987) 1.
W. H. Lee and J. W. Park, J. Mater. Sci. Lett. 19(11) (2000) 925.
B. Kasemo, J. Prosth. Dent. 49 (1983) 832.
B. Kasemo, J. Lausmaa, P. I. Branermark, G. A. Zarb and T. Albrektsson, in “Tissue-Integrated Prosthseses” (Quintessence Books, Chicago, 1985) p. 137.
K. Gomi and J. E. Davies, J. Biomed. Mater. Res. 27 (1993) 429.
J. Y. Martin, Z. Schwartz, T. W. Hummert, D. M. Schraub, J. Simpson, J. Laukford, D. D. Dean, D. L. Cochran and B. D. Boyan, ibid. 29 (1995) 389.
B. Groessner-Schreiber and R. S. Tuan, J. Cell Sci. 101 (1992) 209.
T. Morita, H. Takahashi, M. Shimizu and K. Kawasaki, Fatigue Fract. Eng. Mater. Struct. 20 (1997) 85.
J. E. Lemons, Surf. Coatings Techn. 103/104 (1998) 135.
M. Morra and C. Cassinelli, Surf. Intf. Analy. 25 (1997) 983.
A. Loinaz, M. Rinner, F. Alonso, J. Onate and W. Ensinger, Surf. Coatings Techn. 103/104 (1998) 262.
H. Plenk, J. Biomed. Mater. Res. 43 (1998) 350.
C. Howlett, H. Zreiqat, Y. Wu, D. Mcfall and D. Mckenzie, ibid. 45 (1999) 345.
T. Czerwiec, H. Michel and E. Bergmann, Surf. And Coatings Techn. 108/109 (1998) 182.
A. Sarkissian, A. Bourque-Viens, R. Paynter, R. Saint-Jacques and B. Stansfield, ibid. 98 (1998) 1336.
W. H. Lee, J. W. Park, D. A. Puleo and J. Y. Kim, J. Mater. Sci. 35(3) (2000) 593.
W. H. Lee and D. A. Puleo, J. Mater. Sci. Lett. 18 (1999) 817.
T. Hanawa and M. Ota, Appl. Surf. Sci. 55 (1992) 269.
Idem., Biomaterials 12 (1991) 767.
J. Moulder, W. Stickle, P. Sobal and K. Bomber, “Handbook of X-ray Photoelectron Spectroscopy” (Perkin Elmer Corp., Eden Prairie, 1992) p. 213.
M. Ask, J. Lausmaa and B. Kasemo, Appl. Surf. Sci. 35 (1989) 283.
N. R. Armstrong and R. K. Quinn, Surf. Sci. 67 (1977) 451.
W. Gopel, J. A. Anderson, D. Frankel, M. Jaehnig, K. Phillips, J. A. Shaffer and G. Rocker, ibid. 139 (1984) 333.
C. N. Sayers and N. R. Armstrong, ibid. 77 (1978) 301.
T. J. Davies and S. T. S. Al-Hassani, “Advances in Materials Technology in America, Vol. 2, Materials Processing and Performance,” edited by I. LeMay (America Society for Mechanical Engineers, New York, 1980) p. 147.
D. K. Kim, H.-R. Pak and K. Okazaki, Mat. Sci. Eng. A104 (1988) 191.
J. F. Drummond, J. T. Dominici, P. J. Sammon, K. Okazaki, R. Geissler, M. I. Lifland, S. A. Anderson and W. Renshaw, J. Oral Implantol. 21 (1995) 295.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lee, W.H., Kim, S.J., Lee, W.J. et al. Mechanism of surface modification of a porous-coated Ti-6Al-4V implant fabricated by electrical resistance sintering. Journal of Materials Science 36, 3573–3577 (2001). https://doi.org/10.1023/A:1017905305737
Issue Date:
DOI: https://doi.org/10.1023/A:1017905305737