Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automating the synthesis of decision procedures in a constructive metatheory

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We present an approach to the automatic construction of decision procedures, via a detailed example in propositional logic. The approach adapts the methods of proof‐planning and the heuristics for induction to a new domain, that of metatheoretic procedures. This approach starts by providing an alternative characterisation of validity; the proofs of the correctness and completeness of this characterisation, and the existence of a decision procedure, are then amenable to automation in the way we describe. In this paper we identify a set of principled extensions to the heuristics for induction needed to tackle the proof obligations arising in the new problem domain and discuss their integration within the clam‐Oyster system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A. Armando, A. Cimatti and L. Viganò, Building and executing proof strategies in a formal metatheory, in: Proc. 3rd Conf. of the Italian Association for Artificial Intelligence, Lecture Notes in Artificial Intelligence, Vol. 728 (Springer, Berlin, 1993).

    Google Scholar 

  2. D. Basin and R. Constable, Metalogical frameworks, in: Logical Environments, eds. G. Huet and G. Plotkin (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  3. S. Biundo, A synthesis system mechanizing proofs by induction, in: Proc. 1986 European Conf. on Artificial Intelligence(1986) pp. 69-78.

  4. S. Biundo, Automated synthesis of recursive algorithms as a theorem proving tool, in: Proc. 8th European Conference on Artificial Intelligence, ed. Y. Kodratoff (Pitman, 1988) pp. 553-558.

  5. A. Bouhoula and M. Rusinowitch, Implicit induction in conditional theories, Journal of Automated Reasoning 14(2) (1995) 189-235.

    Article  MATH  MathSciNet  Google Scholar 

  6. R.S. Boyer and J.S. Moore, A Computational Logic(Academic Press, New York, 1979).

    Google Scholar 

  7. R.S. Boyer and J.S. Moore, Metafunctions, in: The Correctness Problem in Computer Science, eds. R.S. Boyer and J.S. Moore (Academic Press, New York, 1981) pp. 103-184.

    Google Scholar 

  8. R.S. Boyer and J.S. Moore, A Computational Logic Handbook, Perspectives in Computing, Vol. 23 (Academic Press, New York, 1988).

    Google Scholar 

  9. A. Bundy, The use of explicit plans to guide inductive proofs, in: Proc. 9th Conf. on Automated Deduction, eds. R. Lusk and R. Overbeek (Springer, Berlin, 1988) pp. 111-120. Longer version available from Edinburgh as DAI Research Paper No. 349.

    Google Scholar 

  10. A. Bundy, ed., Proc. 12th Conf. on Automated Deduction, Nancy, France, Lecture Notes in Artificial Intelligence, Vol. 814 (Springer, Berlin, 1994).

  11. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland and A. Smaill, Rippling: A heuristic for guiding inductive proofs, Artificial Intelligence 62 (1993) 185-253.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Bundy, F. van Harmelen, J. Hesketh and A. Smaill, Experiments with proof plans for induction, Journal of Automated Reasoning 7 (1991) 303-324.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Bundy, F. van Harmelen, J. Hesketh, A. Smaill and A. Stevens, A rational reconstruction and extension of recursion analysis, in: Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, ed. N.S. Sridharan (Morgan Kaufmann, 1989) pp. 359-365.

  14. R.L. Constable, S.F. Allen, H.M. Bromley et al., Implementing Mathematics with the Nuprl Proof Development System(Prentice-Hall, Englewood Cliffs, NJ, 1986).

    Google Scholar 

  15. R.L. Constable and D.J. Howe, Implementing metamathematics as an approach to automatic theorem proving, in: Formal Techniques in Artificial Intelligence: A Sourcebook, ed. R.B. Banerji (North-Holland, Amsterdam, 1990) pp. 45-76.

    Google Scholar 

  16. M. Davis and H. Putnam, A computing procedure for quantification theory, Journal of the Association for Computing Machinery 7 (1960) 201-215.

    MATH  MathSciNet  Google Scholar 

  17. N. Dershowitz, Orderings for term-rewriting systems, Theoretical Computer Science 17(3) (March 1982) 279-301.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic, Journal of Symbolic Logic 57 (1992) 795-807.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Feferman, Finitary inductively presented logics, in: Logic Colloquium' 88(North-Holland, Amsterdam, 1989) pp. 191-220.

    Google Scholar 

  20. F. Giunchiglia and P. Traverso, A metatheory of a mechanized object theory, Artificial Intelligence 80 (1996) 197-241.

    Article  MathSciNet  Google Scholar 

  21. Z. Manna and R.J. Waldinger, A deductive approach to program synthesis, ACM Transactions on Programming Languages and Systems 2(1) (1980) 90-121.

    Article  MATH  Google Scholar 

  22. S. Matthews, A. Smaill and D. Basin, Experience with FS0 as a framework theory, in: Logical Environments, eds. G. Huet and G. Plotkin (Cambridge University Press, Cambridge, 1993) pp. 61- 82.

    Google Scholar 

  23. L.C. Paulson, Designing a theorem prover, in: Handbook of Logic in Computer Science, eds. S. Abramsky, D.M. Gabbay and T.S.E. Maibaum, Vol. 2 (Oxford University Press, Oxford, 1992) pp. 415-475.

    Google Scholar 

  24. M. Stickel, R. Waldinger, M. Lowry, T. Pressburger and I. Underwood, Deductive composition of astronomical software from subroutine libraries, in: Proc. 12th Conf. on Automated Deduction, Nancy, France, Lecture Notes in Artificial Intelligence, Vol. 814, ed. A. Bundy (Springer, Berlin, 1994) pp. 341-355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armando, A., Gallagher, J., Smaill, A. et al. Automating the synthesis of decision procedures in a constructive metatheory. Annals of Mathematics and Artificial Intelligence 22, 259–279 (1998). https://doi.org/10.1023/A:1018943603394

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018943603394

Keywords