Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Strong bounds on the approximability of two Pspace-hard problems in propositional planning

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The computational complexity of planning with Strips-style operators has received a considerable amount of interest in the literature. However, the approximability of such problems has only received minute attention. We study two Pspace-hard optimization versions of propositional planning and provide tight upper and lower bounds on their approximability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J. Allen, J. Hendler and A. Tate, eds., Readings in Planning (Morgan Kaufmann, San Mateo, CA, 1990).

    Google Scholar 

  2. C. Bäckström, Computational aspects of reordering plans, J. Artif. Intell. Res. 9 (1998) 99-137.

    Google Scholar 

  3. C. Bäckström, Expressive equivalence of planning formalisms, Artif. Intell. 76(1–2) (1995) 17-34.

    Article  Google Scholar 

  4. C. Bäckström and P. Jonsson, Planning with abstraction hierarchies can be exponentially less efficient, in: Proc. IJCAI '95 (Morgan Kaufmann, San Mateo, CA, 1995) pp. 1599-1604.

    Google Scholar 

  5. C. Bäckström and I. Klein, Planning in polynomial time: The SAS-PUBS class, Comput. Intell. 7(3) (1991) 181-197.

    Google Scholar 

  6. T. Bylander, The computational complexity of propositional STRIPS planning, Artif. Intell. 69 (1994) 165-204.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Chapman, Planning for conjunctive goals, Artif. Intell. 32 (1987) 333-377.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Condon, J. Feigenbaum, C. Lund and P.W. Shor, Probabilistically checkable debate systems and non-approximability of PSPACE-hard functions, Chicago J. Theoret. Comput. Sci. (1995) article 4.

  9. A. Condon, J. Feigenbaum, C. Lund and P.W. Shor, Random debaters and the hardness of approximating stochastic functions, SIAM J. Comput. 26(2) (1997) 369-400.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Crescenzi and V. Kann, A compendium of NP optimization problems, Technical Report SI/RR-95/02, Dipartimento di Scienze dell'Informazione, Universitá di Roma “La Sapienza” (1995).

  11. P. Crescenzi and A. Panconesi, Completeness in approximation classes, Inform. Comput. 93(2) (1991) 241-262.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Crescenzi and L. Trevisan, On approximation scheme preserving reducibility and its applications, in: Proc. STACS '94, Lecture Notes in Computer Science, Vol. 880 (Springer, Berlin, 1994) pp. 330-341.

    Google Scholar 

  13. K. Erol, D.S. Nau and V.S. Subrahmanian, On the complexity of domain-independent planning, in: Proc. AAAI '92 (AAAI Press/MIT Press, 1992) pp. 381-386.

  14. R.E. Fikes and N.J. Nilsson, STRIPS: A new approach to the application of theorem proving to problem solving, Artif. Intell. 2 (1971) 189-208.

    Article  MATH  Google Scholar 

  15. M.L. Ginsberg, Approximate planning, Artif. Intell. 76(1–2) (1995) 89-123.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Hunt III, M. Marathe and R. Stearns, Generalized CNF satisfiability problems and non-efficient approximability, in: Proc. 9th Conference on Structure in Complexity Theory (IEEE Computer Society Press, Los Alamitos, CA, 1994) pp. 356-366.

    Google Scholar 

  17. P. Jonsson, A non-approximability result for finite function generation, Inform. Process. Lett. 63 (1997) 143-145.

    Article  MathSciNet  Google Scholar 

  18. R.E. Korf, Planning as search: A quantitative approach, Artif. Intell. 33 (1987) 65-88.

    Article  Google Scholar 

  19. M. Marathe, H. Hunt III and S. Ravi, The complexity of approximating PSPACE-complete problems for hierarchical specifications, Nordic J. Comput. 1 (1994) 275-316.

    MATH  MathSciNet  Google Scholar 

  20. J. Orlin, The complexity of dynamic languages and dynamic optimization problems, in: Proc. STOC '81 (ACM Press, New York, 1981) pp. 218-227.

    Google Scholar 

  21. W.J. Savitch, Relationships between nondeterministic and deterministic tape complexities, J. Comput. Syst. Sci. 4(2) (1970) 177-192.

    MATH  MathSciNet  Google Scholar 

  22. B. Selman, Near-optimal plans, tractability, and reactivity, in: Proc. KR '94 (Morgan Kaufmann, San Mateo, CA, 1994) pp. 521-529.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonsson, P. Strong bounds on the approximability of two Pspace-hard problems in propositional planning. Annals of Mathematics and Artificial Intelligence 26, 133–147 (1999). https://doi.org/10.1023/A:1018954827926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018954827926

Keywords