Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Scalable parallel simulations of wireless networks with WiPPET: Modeling of radio propagation, mobility and protocols

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

We review the design, selected applications and performance of WiPPET (Wireless Propagation and Protocol Evaluation Testbed), a general parallel simulation testbed for various types of wireless networks. WiPPET has been written in TeD/C++, an object‐oriented modeling framework that isolates network modeling from the underlying parallel discrete event simulator. We describe the techniques for modeling radio propagation (long and short‐scale fading and interference) and protocols that promote scalability of parallel simulations at session and packet time‐scales. We outline two selected applications of WiPPET: integrated radio resource management in a mobile wireless network; and packet losses due to mobility and short‐scale fading over a radio link. We illustrate the efficiency of the simulator under two partitioning schemes with parallel performance data obtained using the Georgia Time Warp optimistic simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Babich, O.E. Kelly and G. Lombardi, A variable-order discrete model for the mobile propagation channel, in: Proc. of the 9th Tyrrhenian Internat. Workshop on Digital Communications, Lerici, Italy (September 1997).

  2. Y. Bai, A. Ogielski and G. Wu, TCP-RLP coordination and interprotocol signaling for wireless internet, in: Proc. of VTC '99 (May 1999).

  3. Y. Bai, A. Ogielski and G. Wu, TCP over IS-707, in: PIMRC '99 (September 1999).

  4. S. Bhatt, R. Fujimoto, A. Ogielski and K. Perumalla, Parallel simulation techniques for large-scale networks, IEEE Communications Magazine 36(8) (August 1998) 42–47.

    Google Scholar 

  5. C.D. Carothers, R.M. Fujimoto, Y.-B. Lin and P. England, Distributed simulation of large-scale pcs networks, in: Proc. of the 1994 MASCOTS Conference (January 1994) pp. 2-6.

  6. K.G. Chen, Integrated dynamic radio resource management of wireless communication systems, Masters thesis, Rutgers, The State University of New Jersey, New Brunswick, NJ (1996).

    Google Scholar 

  7. C.N. Chuah and R. Yates, Evaluation of a minimum power handoff algorithm, in: 6th IEEE Internat. Symposium on Personal, Indoor and Mobile Radio Communications PIMRC '95 (1995) pp. 623-627.

  8. C.N. Chuah, R. Yates and D. Goodman, Integrated dynamic radio resource management, in: Proc. of IEEE Vehicular Technology Conference, VTC-95 (1995) pp. 584-588.

  9. R.H. Clarke, A statistical theory of mobile-radio reception, Bell System Technical Journal 47 (1968) 957–1000.

    Google Scholar 

  10. J.H. Cowie, D.M. Nicol and A. Ogielski, Modeling the global Internet, Computer Science and Engineering (January/February 1999) pp. 42-50.

  11. S. Das, R.M. Fujimoto, K. Panesar, D. Allison and M. Hybinette, GTW: A time warp system for shared memory multiprocessors, in: Winter Simulation Conf. Proceedings (1994) pp. 1332-1339.

  12. M. Gudmundson, Correlation model for shadow fading in mobile radio systems, Electron. Lett. 27(23) (1991) 2145–2146.

    Google Scholar 

  13. W.C. Jakes, Jr., Microwave Mobile Communications (Wiley, New York, 1974).

    Google Scholar 

  14. J. Lai and N.B. Mandayam, Fade margins for minimum duration outages in lognormal shadow fading and Rayleigh fading, in: Proc. of Asilomar '97, Monterrey, CA (November 1997) pp. 609-613.

  15. J. Lai and N.B. Mandayam, Packet error rate for burst-errorcorrecting codes in Rayleigh fading channels, in: Proc. of VTC '98, Ottawa, Canada (May 1998) pp. 1568-1572.

  16. M. Liljenstam and R. Ayani, A model for parallel simulation of mobile telecommunication systems, in: Proc. of the Internat. Workshop on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS) (1996).

  17. W. Liu, C.-C. Chiang, H.-K. Wu, V. Jha, M. Gerla and R. Bagrodia, Parallel simulation environment for mobile wireless networks, in: Proc. of the 1996 Winter Simulation Conference WSC '96, Coronado, CA (1996) pp. 605-612.

  18. D.M. Nicol, ed., ACM SIGMETRICS, Special Issue on the Telecommunications Description Language of Performance Evaluation Review 25 (March 1998).

  19. J. Panchal, Parallel simulator for wireless networks, Masters thesis, Rutgers, The State University of New Jersey, New Brunswick, NJ (July 1998). See http://www.winlab.rutgers.edu/~ryates/thesis/panchal-ms.ps.

  20. J. Panchal, O. Kelly, J. Lai, N. Mandayam, A.T. Ogielski and R. Yates, Parallel simulations of wireless networks with TED: Radio propagation, mobility and protocols, Performance Evaluation Review 25(4) (March 1998) 30–39.

    Google Scholar 

  21. J. Panchal, O. Kelly, J. Lai, N. Mandayam, A.T. Ogielski and R. Yates, WiPPET, a virtual testbed for parallel simulations of wireless networks, in: Proc. of the 1998 Parallel and Discrete Simulations Conference PADS 98, Banff, Canada (May 1998) pp. 162-169.

  22. D. Pandian, Channel allocation and power control in IS-136, Masters thesis, Rutgers, The State University of New Jersey, New Brunswick, NJ (January 1999). See http://www.winlab.rutgers.edu/~ryates/thesis/pandian.ps.

  23. K.S. Perumalla, M. Andrews and S. Bhatt, A virtual PNNI network testbed, in: Winter Simulation Conf. Proceedings (December 1997).

  24. K. Perumalla and R. Fujimoto, A C++ instance of TeD, TR GITCC-96-33, College of Computing, Georgia Institute of Technology (1996).

  25. K. Perumalla, A. Ogielski and R. Fujimoto, MetaTeD: A meta language for modeling telecommunication networks, TR GIT-CC-96-32, College of Computing, Georgia Institute of Technology (1996).

  26. T.S. Rappaport, Wireless Communications (Prentice-Hall, Englewood Cliffs, NJ, 1996).

    Google Scholar 

  27. B. Sklar, Rayleigh fading channels in mobile digital communication systems, IEEE Communications Magazine 35(9) (1997) 136–146.

    Google Scholar 

  28. J.I. Smith, A computer generated multipath fading simulation for mobile radio, IEEE Transactions on Vehicular Technology 24(3) (August 1975) 39–40.

    Google Scholar 

  29. R. Vijayan and J.M. Holtzman, A model for analyzing handoff algorithms, IEEE Transactions on Vehicular Technology 42(3) (August 1993) 351–356.

    Google Scholar 

  30. R. Yates, A framework for uplink power control in cellular radio systems, IEEE Journal on Selected Areas in Communications 13(7) (September 1995) 1341–1346.

    Google Scholar 

  31. R. Yates, S. Gupta, C. Rose and S. Sohn, Soft dropping power control, in: Proc. of the IEEE Vehicular Technology Conference VTC 97 (May 1997).

  32. R. Yates and C.Y. Huang, Integrated power control and base station assignment, IEEE Transactions on Vehicular Technology 44(3) (August 1995) 638–644.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, O., Lai, J., Mandayam, N. et al. Scalable parallel simulations of wireless networks with WiPPET: Modeling of radio propagation, mobility and protocols. Mobile Networks and Applications 5, 199–208 (2000). https://doi.org/10.1023/A:1019112713217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019112713217

Keywords