Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Polyhedral end games for polynomial continuation

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Bernshtein’s theorem provides a generically exact upper bound on the number of isolated solutions a sparse polynomial system can have in (ℂ*)n, with ℂ* = ℂ\{0}. When a sparse polynomial system has fewer than this number of isolated solutions some face system must have solutions in (ℂ*)n. In this paper we address the process of recovering a certificate of deficiency from a diverging solution path. This certificate takes the form of a face system along with approximations of its solutions. We apply extrapolation to estimate the cycle number and the face normal. Applications illustrate the practical usefulness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.N. Bernshtein, The number of roots of a system of equations, Functional Anal. Appl. 9(3) (1975) 183-185. (Translated from Funktsional. Anal. i Prilozhen. 9(3) (1975) 1-4.)

  2. G. Björk and R. Fröberg, Methods to “divide out” certain solutions from systems of algebraic equations, applied to find all cyclic 8-roots, in: Analysis, Algebra and Computers in Mathematics Research, Lecture Notes in Mathematics 564, eds. M. Gyllenberg and L.E. Persson (Marcel Dekker, New York 1994) pp. 57-70.

    Google Scholar 

  3. C. Brezinski and M. Redivo-Zaglia, Extrapolation Methods, Studies in Computational Mathematics 2 (North-Holland, Amsterdam, 1991).

    MATH  Google Scholar 

  4. E. Christiansen and H.G. Petersen, Estimation of convergence orders in repeated Richardson extrapolation, BIT 29(1) (1989) 48-59.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Ewald, Combinatorial Convexity and Algebraic Geometry, Graduate Texts in Mathematics 168 (Springer, New York, 1996).

    Google Scholar 

  6. W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies 131 (Princeton Univ. Press, Princeton, NJ, 1993).

    MATH  Google Scholar 

  7. A. Griewank, On solving nonlinear equations with simple singularities or nearly singular solutions SIAM Rev. 27(4) (1985) 537-563.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Hong and V. Stahl, Safe starting regions by fixed points and tightening, Computing 53(3-4) (1995) 322-335.

    Google Scholar 

  9. B. Huber and B. Sturmfels, A polyhedral method for solving sparse polynomial systems, Math. Comp. 64(212) (1995) 1541-1555.

    Article  MathSciNet  Google Scholar 

  10. B. Huber and B. Sturmfels, Bernstein's theorem in affine space, Discrete Comput. Geom. 17(2) (1997) 137-141.

    MATH  MathSciNet  Google Scholar 

  11. T.Y. Li, Numerical solutions of multivariate polynomial systems by homotopy continuation methods, Acta Numerica 6 (1997) 399-436.

    Article  MATH  Google Scholar 

  12. T.Y. Li and X. Wang, The BKK root count in C n, Math. Comp. 65(216) (1996) 1477-1484.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Morgan, Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems (Prentice-Hall, Englewood Cliffs, NJ, 1987).

    MATH  Google Scholar 

  14. A. Morgan and A. Sommese, Computing all solutions to polynomial systems using homotopy continuation, Appl. Math. Comput. 24(2) (1987) 115-138.

    Article  MATH  MathSciNet  Google Scholar 

  15. A.P. Morgan, A.J. Sommese and C.W. Wampler, Computing singular solutions to nonlinear analytic systems, Numer. Math. 58(7) (1991) 669-684.

    MATH  MathSciNet  Google Scholar 

  16. A.P. Morgan, A.J. Sommese and C.W. Wampler, Computing singular solutions to polynomial systems, Adv. in Appl. Math. 13(3) (1992) 305-327.

    Article  MATH  MathSciNet  Google Scholar 

  17. A.P. Morgan, A.J. Sommese and C.W. Wampler, A power series method for computing singular solutions to nonlinear analytic systems, Numer. Math. 63(3) (1992) 391-409.

    Article  MATH  MathSciNet  Google Scholar 

  18. C.V. Nelsen and B.C. Hodgkin, Determination of magnitudes, directions, and locations of two independent dipoles in a circular conducting region from boundary potential measurements, IEEE Trans. Biomed. Engrg. 28(12) (1981) 817-823.

    Google Scholar 

  19. J.M. Rojas, Twisted Chow forms and toric perturbations of degenerate polynomial systems, submitted for publication. Available at http://www-math.mit.edu/~rojas.

  20. J.M. Rojas, Toric laminations, sparse generalized characteristic polynomials, and a refinement of Hilbert's tenth problem, in: Foundations of Computational Mathematics, Selected Papers of IMPA Conf., eds. F. Cucker and M. Shub, Rio de Janeiro, January 1997 (Springer, 1997) pp. 369-381. Revised version available at http://www-math.mit.edu/~rojas.

  21. M. Sosonkina, L.T. Watson and D.E. Stewart, Note on the end game in homotopy zero curve tracking, ACM Trans. Math. Software 22(3) (1996) 281-287.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Verschelde, PHCPACK: A general-purpose solver for polynomial systems by homotopy continuation, Report TW 265, Department of Computer Science, K.U. Leuven (1997). Software available at http://www.math.msu.edu/~jan and http://www.cs.kuleuven.be/~nines/.

    Google Scholar 

  23. J. Verschelde and R. Cools, Polynomial homotopy continuation: A portable Ada software package, in: Proc. of the 1996 Ada-Belgium Seminar, Brussels, Belgium (22 November 1996) The Ada Belgium Newsletter 4 (1996) 59-83.

    Google Scholar 

  24. J. Verschelde and K. Gatermann, Symmetric Newton polytopes for solving sparse polynomial systems, Adv. in Appl. Math. 16(1) (1995) 95-127.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Verschelde, K. Gatermann and R. Cools, Mixed-volume computation by dynamic lifting applied to polynomial system solving, Discrete Comput. Geom. 16(1) (1996) 69-112.

    MATH  MathSciNet  Google Scholar 

  26. J. Verschelde, P. Verlinden and R. Cools, Homotopies exploiting Newton polytopes for solving sparse polynomial systems, SIAM J. Numer. Anal. 31(3) (1994) 915-930.

    Article  MATH  MathSciNet  Google Scholar 

  27. R. Walker, Algebraic Curves, 2nd ed. (Springer, New York, 1978).

    MATH  Google Scholar 

  28. J. Wimp, Sequence Transformations and Their Applications, Mathematics in Science and Engineering 154 (Academic Press, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, B., Verschelde, J. Polyhedral end games for polynomial continuation. Numerical Algorithms 18, 91–108 (1998). https://doi.org/10.1023/A:1019163811284

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019163811284