Abstract
Topic of the paper is Q-logic – a logic of agency in its temporal and modal context. Q-logic may be considered as a basal logic of agency since the most important stit-operators discussed in the literature can be defined or axiomatized easily within its semantical and syntactical framework. Its basic agent dependent operator, the Q-operator (also known as Δ- or cstit-operator), which has been discussed independently by F. v. Kutschera and B. F. Chellas, is investigated here in respect of its relation to other temporal and modal operators. The main result of the paper, then, is a completeness result for a calculus of Q-logic with respect to a semantics defined on the tree-approach to agency as introduced and developed by, among others, F. v. Kutschera and N. D. Belnap.
Similar content being viewed by others
REFERENCES
Belnap, N. D.: 1991a, Backwards and forwards in the modal logic of agency, Philos. Phenomen. Res. 51, 777-807.
Belnap, N. D.: 1991b, Before refraining: Concepts for agency, Erkenntnis 34, 137-169.
Belnap, N. D. and Perloff, M.: 1990, Seeing to it that: A canonical form for agentives, in H. E. Kyburg, Jr., R. P. Loui, and G. N. Carlson (eds.), Knowledge Representation and Defeasible Reasoning, Kluwer Academic Publishers, Dordrecht, pp. 175-199.
Belnap, N. D. and Perloff, M.: 1992, The way of the agent, Studia Logica 51, 463-484.
Belnap, N. D., Perloff, M. and Xu, M.: 2001, Facing the Future: Agents and their Choices in our Indeterminist World, Oxford University Press, New York.
Chellas, B. F.: 1992, Time and modality in the logic of agency, Studia Logica 51, 485-517.
de Rijke, M.: 1992, The modal logic of inequality, J. Symbolic Logic 57(2), 566-584.
Gabbay, D. M., Hodkinson, I. and Reynolds M.: 1994, Temporal Logic: Mathematical Foundations and Computational Aspects, Vol. I, Oxford Logic Guides 28, Clarendon Press, Oxford.
Gargov, G. and Goranko, V.: 1993, Modal logic with names, J. Philos. Logic 22, 607-636.
Horty, J. F.: 2001, Agency and Deontic Logic, Oxford University Press, Oxford.
Horty, J. F. and Belnap, N. D.: 1995, The deliberative stit: A study of action, omission, ability, and obligation, J. Philos. Logic 24, 583-644.
Kutschera, F. v.: 1986, Bewirken, Erkenntnis 24, 253-281.
Kutschera, F. v.: 1997, T × W-completeness, J. Philos. Logic 26, 241-250.
Maio, M. C. D. and Zanardo, A.: 1994, Synchronized histories in Prior-Thomason representation of branching time, in D. M. Gabbay and H. J. Ohlbach (eds.), Proceedings of the First International Conference on Temporal Logic, ICTL '94, Lecture Notes in Artificial Intelligence 827, Springer-Verlag, Berlin, pp. 265-282.
Maio, M. C. D. and Zanardo, A.: 1998, A Gabbay-rule free axiomatization of T×W validity, J. Philos. Logic 27, 435-487.
Reynolds, M.: 2001, An axiomatization of full computation tree logic, J. Symbolic Logic 66(3), 1011-1057.
Thomason, R. H.: 1984, Combinations of tense and modality, in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic: Extensions of Classical Logic, Vol. II, D. Reidel, Dordrecht, pp. 135-165.
Wölfl, S.: 1999a, Combinations of tense and modality for predicate logic, J. Philos. Logic 28, 371-398.
Wölfl, S.: 1999b, Kombinierte Zeit-und Modallogik: Vollständigkeitsresultate für prädikatenlogische Sprachen, Logische Philosophie 5, Logos Verlag, Berlin.
Xu, M.: 1994a, Decidability of stit theory with a single agent and refref equivalence, Studia Logica 53(2), 259-298.
Xu, M.: 1994b, Decidability of deliberative stit theories with multiple agents, in D. M. Gabbay and H. J. Ohlbach (eds.), Temporal Logic, Springer, Berlin, pp. 332-348.
Xu, M.: 1994c, Doing and refraining from refraining, J. Philos. Logic 23(6), 621-632.
WÖLFL Xu, M.: 1995a, Busy choice sequences, refraining formulas, and modalities, Studia Logica 54(3), 267-301.
Xu, M.: 1995b, On the basic logic of stit with a single agent, J. Symbolic Logic 60(2), 459-483.
Xu, M.: 1998, Axioms for deliberative stit, J. Philos. Logic 27(5), 505-552.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Wölfl, S. Propositional Q-Logic. Journal of Philosophical Logic 31, 387–414 (2002). https://doi.org/10.1023/A:1020163602542
Issue Date:
DOI: https://doi.org/10.1023/A:1020163602542