Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

The Mystery of Structure and Function of Sensory Processing Areas of the Neocortex: A Resolution

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Many different neural models have been proposed to account for major characteristics of the memory phenomenon family in primates. However, in spite of the large body of neurophysiological, anatomical and behavioral data, there is no direct evidence for supporting one model while falsifying the others. And yet, we can discriminate models based on their complexity and/or their predictive power. In this paper we present a computational framework with our basic assumption that neural information processing is performed by generative networks. A complex architecture is 'derived' by using information-theoretic principles. We find that our approach seems to uncover possible relations among the functional memory units (declarative and implicit memory) and the process of information encoding in primates. The architecture can also be related to the entorhinal-hippocampal loop. An effort is made to form a prototype of this computational architecture and to map it onto the functional units of the neocortex. This mapping leads us to claim that one may gain a better understanding by considering that anatomical and functional layers of the cortex differ. Philosophical consequences regarding the homunculus fallacy are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acsády L, Kamondi A, Sík A, Freund TF, Buzsáki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J. Neurosci. 18: 3386–3403.

    Google Scholar 

  • Adorján P, Levitt J, Lund J, Obermayer K (1999) A model for the intracortical origin of orientation preference and tuning in macaque striate cortex. Vis. Neurosci. 16: 303–318.

    Google Scholar 

  • Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J. Comp. Neurol. 182: 851–914.

    Google Scholar 

  • Amari S, Cichocki A, Yang H (1996) A new learning algorithm for blind signal separation. In: Advances in Neural Information Processing Systems. Morgan Kaufmann, San Mateo, CA, pp. 757–763.

    Google Scholar 

  • Amari S, Nagaoka H (2000) Methods of Information Geometry, Vol. 191 ofAMSTranslations of Mathematical Monographs. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Aszalós P, Kéri Sz, Kovács Gy, Benedek Gy, Janka Z, Lőrincz A (1999) Generative network explains category formation in Alzheimer patients. In Proceedings of IJCNN 1999, Washington DC. CD ROM: JCNN2137.PDF, IEEE Catalog Number: 99CH36339C.

  • Bell A, Sejnowski T (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7: 1129–1159.

    Google Scholar 

  • Ben-Yishai R, Bar-Or R, Sompolinsky H (1995) Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA 92: 3844–3848.

    Google Scholar 

  • Biederman I (1987) Recognition-by-components:Atheory of human image understanding. Psychol. Rev.94: 115–147.

    Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: Long-term potebitiation in the hippocampus. Nature 361: 31–39.

    Google Scholar 

  • Bousquet O, Balakrishnan K, Honavar V (1999) Is the hippocampus a Kalman filter? In: Proceedings of the Pacific Symposium on Biocomputing, pp. 619–630.

  • Bragin A, Jando G, Nádasdy Y, Hetke J, Wise K, Buzsáki G (1995) Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15: 47–60.

    Google Scholar 

  • Cai D, DeAngelis G, Freeman R (1997) Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J Neurophysiol 78: 1045–1061.

    Google Scholar 

  • Callaway E (2000) Visual cortex, cell types and connection. In: The MIT Encyclopedia of Cognitive Sciences. MIT Press, Cambridge, MA, pp. 867–869.

    Google Scholar 

  • Calvin W(1999) Columns and modules. In: The MIT Encyclopedia of the Cognitive Sciences. MIT Press, Cambridge, MA, pp. 148–150.

  • Chandler D (1987) Introduction to Modern Statistical Mechanics. Oxford University Press, New York.

    Google Scholar 

  • Charles D, Fyfe C (1998) Modelling multiple cause structure using rectification constraints. Network: Computations in Neural Systems 9: 167–182.

    Google Scholar 

  • Chrobak J, Buzsáki G (1994) Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat. J. Neurosci. 14: 6160–6170.

    Google Scholar 

  • Churchland P (1989) On the nature of theories: A neurocomputational perspective. In: W. Savage, ed. Scientific Theories: Minnesota Studies in the Philosophy of Science, Vol. 14 University of Minnesota Press, Minneapolis, pp. 59–101.

    Google Scholar 

  • Claiborne BJ, Amaral DG, Cowan W (1986) A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J. Comp. Neurol. [vn246]: 435–458.

  • Comon P (1994) Independent component analysis-A new concept? Signal Processing 36: 287–314.

    Google Scholar 

  • Cover T, Thomas J (1991) Elements of Information Theory. John Wiley and Sons, New York, USA.

    Google Scholar 

  • Dennett D (1987) The Intentional Stance. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Dennett D (1988) Quining qualia. In: Marcel A and Bisiach E, eds. Consciousness in Contemporary Science. Clarendon Press, Oxford, pp. 42–77.

    Google Scholar 

  • Dennett D (1991) Consciousness Explained Little Brown, Boston, MA.

  • Dickson CT, Alonso A (1997) Muscarinic induction of synchronous population activity in the entorhinal cortex. J. Neurosci 17: 6729–6744.

    Google Scholar 

  • Douglas R, Koch C, Mahowald M, Martin K, Suarez H (1995) Recurrent excitation in neocortical circuits. Science 269: 981–985.

    Google Scholar 

  • Gluck MA (1996) Computational models of hippocampal function in memory. Hippocampus 6(6): 565–762.

    Google Scholar 

  • Eichenbaum H (2000) A cortcal-hippocampal system for declarative memory. Nature Reviews 1: 41–50.

    Google Scholar 

  • Field D (1987) Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America A 4: 2379–2394.

    Google Scholar 

  • Fodor JA (1981) Representation. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Gelder T V (1995) What might cognition be, if not computation? Journal of Philosophy XCI: 345–381.

    Google Scholar 

  • Gluck M, Myers C (1993) Hippocampal mediation of stimulus representation: A computational theory. Hippocampus 3(4): 491–516.

    Google Scholar 

  • Hasselmo M, McClelland J (1999) Neural models of memory. Current Option in Neurobiology 9: 184–188.

    Google Scholar 

  • Hasselmo M, Wyble B, Wallenstein G (1996) Encoding and retrieval of episodic memories: Role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus 6: 693–708.

    Google Scholar 

  • Henze D, Wittner L, Buzsaki G (2001) Single dentate gyrus granule cells monosynaptically drive hilar and CA3 neurons in vivo. Soc. Neurosci. Abstr, vol, 27, no. 537.7.

  • Hinton G, Ghahramani Z (1997) Generative models for discovering sparse distributed representations. Philosophical Transactions of the Royal Society B 352: 1177–1190.

    Google Scholar 

  • Hinton G, Sejnowski T (1983) In: Conference on Vision and Pattern Recognition, Proceedings of the IEEE Computer Society Optimal Perceptual Inference. IEEE Press, pp. 448–453.

  • Horn B (1977) Understanding image intensities. Artificial Intelligence 8: 201–231.

    Google Scholar 

  • Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160: 106–154.

    Google Scholar 

  • Hyvärinen A (1999a) Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood estimation. Neural Computation 11: 1739–1768.

    Google Scholar 

  • Hyvärinen A (1999b) Survey on independent component analysis. Neural Computing Surveys 2: 94–128.

    Google Scholar 

  • Hyvärinen A, Hoyer P, Oja E (1999) Sparse code shrinkage: Denoising by nonlinear maximum likelihood estimation. In: Advances in Neural Information Processing Systems 11 (NIPS*98). MIT Press, Cambridge, MA, pp. 1739–1768.

    Google Scholar 

  • Hyvärinen A, Oja E (1997) A fast fixed-point algorithm for independent component analysis. Neural Computation 9: 1483–1492.

    Google Scholar 

  • Jensen O, Lisman J (1996) Hippocampal CA3 region predicts memory sequences: Accounting for the phase precession of place cells. Learning and Memory 3: 279–287.

    Google Scholar 

  • Jutten C, Herault J (1991) Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing 24: 1–10.

    Google Scholar 

  • Káli S, Dayan P (1998) 'The formation of direction independent place fields in area CA3 of the rodent hippocampus using Hebbian plasticity in a recurrent network. Society for Neuroscience Abstracts 24: 931.

    Google Scholar 

  • Káli S, Dayan P (1999) Spatial representations in related environments in a recurrent model of area CA3 of the rat. In: Proceedings of ICANN99.

  • Karhunen J, Oja E, Wang L, Vigario R, Joutsensalo J (1997) A class of neural networks for independent component analysis. IEEE Trans. On Neural Networks 8: 487–504.

    Google Scholar 

  • Kéri S, Benedek G, Janka Z (1999) Classification learning in Alzheimer's disease. Brain (122): 1063–1068.

    Google Scholar 

  • Kéri Sz, Janka Z, Benedek Gy., Aszalós P, Szatmaáry B, Szirtes G, Lórincz A (2002) Categories, prototypes and memory systems in Alzheimer's disease. Trends in Cognitive Sciences 6: 132–136.

    Google Scholar 

  • Köhler C (1985a) Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex. J. Comp. Neurol 236: 504–522.

    Google Scholar 

  • Köhler C (1985b) Intrinsic projections of the retrohippocampal region in the rat brain. II. The medial entorhinal area. J. Comp. Neurol 246: 149–169.

    Google Scholar 

  • Knowlton B, Squire L (1993) The learning of natural categories: Parallel memory systems for item memory and category-level knowledge. Science 262: 147–149.

    Google Scholar 

  • Koch C, Poggio T (1999) Predicting the visual world: Silence is golden. Nature Neuroscience 2: 9–10.

    Google Scholar 

  • Laheld B, Cardoso J (1994) Adaptive source separation with uniform performance. In: Signal Processing VII: Theories and Applications. Proceedings of EUSIPCO-94, Edinburgh, UK, September 1994, vol. 2. pp. 183–186.

    Google Scholar 

  • Lee D, Seung H (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401: 788–791.

    Google Scholar 

  • Lee D, Seung H (2001) Algorithms for non-negative matrix factorization. In: Advances in Neural Processing Systems, Vol. 13. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Lee T, Bell A, Lambert R (1997) Blind separation of convolved and delayed sources. In: Advances in Neural Information Processing Systems 9 (NIPS*96). MIT Press, pp. 758–767.

  • Levy W (1996) A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus 6: 579–590.

    Google Scholar 

  • Lisman J (1999) Relating hippocampal circuitry to function: Recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron 22: 233–242.

    Google Scholar 

  • Lisman J, Idiart M (1995) A mechanism for storing 7a2 short-term memories in oscillatory subcycles. Science 267: 1512–1514.

    Google Scholar 

  • Lórincz A (1997a) Common control principles of basal ganglia- thalamocortical loops and the hippocampus. Neural Network World 7: 649–677.

    Google Scholar 

  • Lórincz A (1997b) ICANN 97, Lecture Notes in Computer Science, Vol. 1327 In: Gerstner W, Germond A, Hasler M, Nicoud JD, eds. Hippocampal formation trains independent components via forcing input reconstruction, Springer, Berlin, pp. 163–168.

    Google Scholar 

  • Lórincz A (1997c) Towards a unified model of cortical computation II: From control architecture to a model of consiousness. Neural Network World 7: 137–152.

    Google Scholar 

  • Lórincz A (1998) Forming independent components via temporal locking of reconstruction architectures: A functional model of the hippocampus. Biological Cybernetics 79: 263–275.

    Google Scholar 

  • Lórincz A, Buzsáki Gy. (2000) The parahippocampal region: Implications for neurological and psychiatric diseases. In: Scharfman H, Witter M, Schwarz R, eds. Annals of the New York Academy of Sciences, Vol. 911. New York Academy of Sciences New York, pp. 83–111.

    Google Scholar 

  • Lórincz A, Póczos B, Szirtes G, Takács B (2002) Ockham's razor at work: Modeling of the 'homunculus'. Brain and Mind (in press).

  • Lórincz A, Szatmáry B, Szirtes G, Takács B (2001a) Recognition of novelty made easy: Constraints of channel capacity on generative networks. In: French R, ed.Connectionist Models of Learning, Development and Evolution. Springer-Verlag, London, pp. 73–82.

    Google Scholar 

  • Lórincz A, Szirtes G, Takács B, Buzsáki Gy (2001b) Independent component analysis of temporal sequences forms place cells. Neurocomputing 38-40: 769–774.

    Google Scholar 

  • Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213–215.

    Google Scholar 

  • McClelland J, McNaughton B, O'Reilly R (1995) Why are there complementary learning systems in the hippocampus and neocortex. Psychological Review 102: 419–457.

    Google Scholar 

  • McNaughton BL, Morris RM (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 10: 408–415.

    Google Scholar 

  • Miller K (1994) Amodel for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON-and OFF-center inputs. J. Neurosci. 14: 409–441.

    Google Scholar 

  • Miller K, Erwin E, Kayser A(1999) Is the development of orientation selectivity instructed by activity? J. Neurobiol. 41: 44–57.

    Google Scholar 

  • Myers CE, Gluck M, Granger M (1995) Dissociation of hippocampal and entorhinal function in associative Learning: A computational approach. Psychobiology 23: 116–138.

    Google Scholar 

  • Nádasdy Z, Hirase H, Czurkó A, Csicsvári J, Buzsáki G (1999) Replay and time compression of recurring spike sequenses in the hippocampus. Journal of Neuroscience 19: 6200–6212.

    Google Scholar 

  • Olshausen B (1996) Learning linear, sparse factorial codes. A.I. Memo 1580, MIT AI Lab. C.B.C.L. paper no. 138.

  • Olshausen B, Field D (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381: 607–609.

    Google Scholar 

  • Olshausen B, Field D (1997) Sparse coding with an overcomplete basis set: A strategy employed by VI? Vision Research 37: 3311–3325.

    Google Scholar 

  • O'Reilly R, Rudy J (1999) Conjunctive representations in learning and memory: Principles of cortical and hippocampal function. Technical report, Department of Psychology, University of Colorado, Boulder.

    Google Scholar 

  • Oussar Y, Dreyfus G (2001) How to be a gray box: Dynamic semiphysical modeling. Neural Networks 14: 1161–1172.

    Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics 5: 111–126.

    Google Scholar 

  • Rao R, Ballard D (1999) Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2: 79–87.

    Google Scholar 

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci. 2: 1019–1025.

    Google Scholar 

  • Rolls E (1989) Functions of neuronal networks in the hippocampus and neocortex in memory. In: Byrne JH, Berry WO, eds. Neural Models of Plasticity: Experimental and Theoretical Approaches. Academic Press, San Diego, pp. 240–265.

    Google Scholar 

  • Rolls E (2000) Hippocampo-cortical and cortico-cortical backprojections. Hippocampus 10: 380–388.

    Google Scholar 

  • Saul A, Humphrey A(1990) Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. J Neurophysiol. 64: 206–224.

    Google Scholar 

  • Schwartzkroin PA (1994) Role of the hippocampus in epilepsy. Hippocampus 3: 239–242.

    Google Scholar 

  • Scoville W, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20: 11–21.

    Google Scholar 

  • Searle J (1992) The Rediscovery of Mind. Bradford Books, MIT Press, Cambridge, MA.

    Google Scholar 

  • Seress L (1992) Morphological variability and developmental aspects of monkey and human granule cells: Differences between the rodent and primate dentate gyrus. Epilepsy Res. Suppl. 7: 3–28.

    Google Scholar 

  • Simoncelli E, Olshausen B (2001) Natural image statistics and neural representation. Annual Review of Neuroscience 24: 1193–1215.

    Google Scholar 

  • Skaggs WE, McNaughton BL (1996) Replay of neuronal firing sequences in rathippocampus during sleep following spatial experience. Science 271: 1870–1873.

    Google Scholar 

  • Smolensky P (1989) Connectionism and the language of thought. In: Loewer B, Rey G, eds. Meaning in Mind: Fodor and His Critics. Basil Blackwell Ltd. Oxford, pp. 201–227.

    Google Scholar 

  • Somers D, Nelson S, Sur M (1995) An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15: 5448–5465.

    Google Scholar 

  • Squire L (1992a) Declarative and nondeclarative memory: Multiple brain systems supporting learning and memory. J. Cog. Neurosci. 4: 232–243.

    Google Scholar 

  • Squire L (1992b) Memory and the hippocampus: A synthesis of findings with rats, monkeys, and humans. Psychol. Rev. 99: 195–231.

    Google Scholar 

  • Steinvas I, Intrator N, Moshaiov A (2000) Improving Classification via Reconstruction. Available at citeseer.nj.nec.com/article/ steinvas00improving.html.

  • Suarez H, Koch C, Douglas R (1995) Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit. J. Neurosci. 15: 6700–6719.

    Google Scholar 

  • Szirtes G, Lórincz A (2002) Low level priming as a consequence of perception. In: Builinaria A, Lave W, eds. Proceedings of the Seventh Neural Computation and Psychology Workshop (NCPW7). World Scientific, pp. 223–235.

  • Tamamaki N, Nojyo Y (1990) Disposition of the slab-like modules formed by axon branches originating from single CA1 pyramidal neurons in the rat hippocampus. J. Comp. Neurol. 291: 509–519.

    Google Scholar 

  • Torkkola K (1996a) Blind separation of convolved sources based on information maximization. In: IEEE Workshop on Neural Networks for Signal Processing Acoustics, Speech and Signal Processing, Kyoto, Japan. pp. 423–432.

  • Torkkola K (1996b) Blind separation of delayed sources based on information maximization. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. pp. 3510–3513.

  • Troyer T, Krukowski A, Priebe NJ, Miller KD (1998) Contrastinvariant orientation tuning in cat visual cortex: Feedforward tuning and correlation-based intracortical connectivity. J. Neurosci. 18: 5908–5927.

    Google Scholar 

  • Wilson M, McNaughton B (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265: 676–679.

    Google Scholar 

  • Wimbauer S, Wenish O, Miller K, Hemmen van J (1997) Development of spatiotemporal receptive fields of simple cells: I. Model formulation. Biological Cybernetics 77: 456–461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lőrincz, A., Szatmáry, B. & Szirtes, G. The Mystery of Structure and Function of Sensory Processing Areas of the Neocortex: A Resolution. J Comput Neurosci 13, 187–205 (2002). https://doi.org/10.1023/A:1020262214821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020262214821