Abstract
A preventive short-term hypoxia (preconditioning) increases neuronal resistance against subsequent strong hypoxic effects. Literature review and authors' own data on molecular-cellular mechanisms of the hypoxic preconditioning, are presented. Participation of intracellular signal transduction, genome, stress-proteins, and neuromodulating peptides in this process, is discussed. The role of glutamatergic as well as calcium and phosphoinositide regulatory systems and neuromodulating factors as the components of a “volume” signal transmission are analyzed in hypoxic precondition-associated induction of functional tolerance mechanisms against acute harmful effects in neurones of olfactory slices.
Similar content being viewed by others
REFERENCES
L. A. Osterman, “Methods for studying proteins and nucleic acids,” in: Electrophoresis and Ultracentrifugation, [in Russian] (1981).
M. O. Samoilov, The Brain and Adaptation. Molecular-Cellular Mechanisms [in Russian], St. Petersburg (1999).
M. O. Samoilov and A. A. Mokrushin, “Molecular-cellular mechanisms of 'volume' transmission in the brain,” Reports of the Scientific Council of the Russian Academy of Medical Sciences in Experimental and Applied Physiology, 6, 12–13 (1996).
M. O. Samoilov and A. A. Mokrushin, “Peptide modulation of synaptic plasticity induced by anoxia,” Dokl. Ros. Akad. Nauk., 354, No. 4, 565–567 (1997).
M. O. Samoilov and A. A. Mokrushin, “The role of endogenous neuromodulatory peptides in increasing the functional tolerance of brain neurons to anoxia,” Byull. Éksperim. Biol. Med., 125, No. 5, 503–505 (1998).
M. O. Samoilov, D. G. Semenov, E. I. Tyul'kova, and E. A. Bolekhan, “Molecular-cellular mechanisms of the protective effect of short-term anoxia,” Fiziol. Zh. im. I. M. Sechenova, 80, No. 12, 71–75 (1994).
D. G. Semenov, E. I. Tyul'kova, M. O. Samoilov, and E. V. Lazarevich, “Involvement of intracellular regulatory systems in the adaptive effects of short-term anoxia in vitro,” Ros. Fiziol. Zh. im. I. M. Sechenova, 85, No. 1, 139–148 (1999).
E. I. Tyul'kova, D. G. Semenov, and M. O. Samoilov, “Involvement of the calcium and phosphoinositide systems of intracellular regulation in the adaptation of neurons in olfactory cortex slices to hypoxia in vitro,” Byull. Éksperim. Biol. Med., 125, No. 3, 259–262 (1998).
H. Abe and T. S. Nowak, Jr., “Gene expression and induced ischemic tolerance following brief insults,” Acta Neurobiol. Exp., 56, No. 1, 3–8 (1961).
G. An, T. Lin, J. Liu, and C. Y. Hxu, “Induction of Krox-20 expression after focal cerebral ischemia,” Biochem. Biophys. Res. Commun., 188, No. 30, 1104–1110 (1992).
F. C. Barone, R. F. White, P. A. Spera, and J. Ellison, “Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirements, and interleukin-1 receptor antagonist and early gene expression,” Stroke, 29, 1937–1951 (1998).
P. E. Bickler and B. M. Hansen, “Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: role of ion changes and membrane damage,” Brain Res., 665, 269–276 (1994).
J. Chen, S. H. Graham, P. H. Chan, J. Q. Lan, G. J. Zhou, and R. P. Simon, “bcl-2 is expressed in neurons that survive focal ischemia in rat,” Neuroreport, 6, 394–398 (1995).
J. Chen, S. H. Graham, R. L. Zhu, and R. P. Simon, “Stress proteins and tolerance to focal cerebral ischemia,” J. Cereb. Blood Flow Metab., 16, 566–577 (1996).
J. Chen and R. Simon, “Ischemic tolerance in the brain,” Neurology, 48, 306–311 (1997).
D. W. Choi and S. M. Rothman, “The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death,” Ann. Rev. Neurosci., 13, 171–182 (1990).
M. Chopp, H. Chen, and K. L. Ho, “Transient hyperthermia protects against subsequent forebrain ischemic cell damage in rat,” Neurobiol., 39, No. 10, 1396–1398 (1989).
M. Chopp, Y. Li, Z. G. Zhang, and S. O. Freytag, “p53 expression in brain after middle cerebral artery occlusion in the rat,” Biochem. Biophys. Res. Commun., 182, 1201–1207 (1992).
G. D. Clark and S. M. Rothman, “Blockade of excitatory amino acid receptors protects anoxic hippocampal slices,” Neuroscience, 21, No. 3, 665–671 (1987).
V. Crepel, C. Hammond, and P. Chinestra, “A selective LTP of NMDA receptor-mediated currents induced by anoxia in CA1 hippocampal neurons,” J. Neurophysiol., 70, No. 5, 2045–2055 (1993).
C.-L. Duan, F.-S. Yan, X.-Y. Song, and G.-W. Lu, “Changes of superoxide dismutase, glutathione peroxidase and lipid peroxidase in brain of mice preconditioned by hypoxia,” Biol. Signals and Receptors, 8, No. 4-5, 256–260 (1999).
M. W. Fox, R. E. Anderson, and F. B. Meyer, “Neuroprotection by corticotropin releasing factor during hypoxia in rat brain,” Stroke, 24, 1072–1075 (1993).
A. T. Gage and P. K. Stanton, “Hypoxia triggers neuroprotective alterations in hippocampal gene expression via a heme-containing sensor,” Brain Res., 719, No. 1-2, 172–178 (1996).
S. S. Glazier, D. M. O'Rourke, D. I. Graham, and F. A. Welsh, “Induction of ischemic tolerance following brief focal ischemia in rat brain,” J. Cereb. Blood Flow Metab., 14, No. 4, 545–553 (1994).
M. P. Goldberg and D. W. Choi, “Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury,” J. Neurosci., 13, No. 8, 3510–3524 (1993).
H. Gozlan, R. Khazipov, and Y. Ben-Ary, “Multiple forms of long-term potentiation and multiple regulatory sites of N-methyl-Daspartate receptors: role of the redox site,” J. Neurobiol., 26, No. 3, 360–369 (1995).
M. C. Grabb and D. W. Choi, “Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors,” J. Neurosci., 19, No. 5, 1657–1662 (1999).
J. Guan, C. Williams, M. Gunning, Could. Mallard, and P. Gluckman, “The effects of IGF-1 treatment after hypoxic-ischemic brain injury in adult rats,” J. Cereb. Blood Flow Metab., 13, 609–616 (1993).
C. Hammond, V. Crepel, H. Gozlan, and Y. Ben-Ary, “Anoxic LTP sheds light on the multiple faces of NMDA receptors,” Trends Neurosci., 17, No. 11, 497–503 (1994).
R. Hata, G. Mies, C. Weissner, and K.-A. Hossman, “Differential expression of c-fos and hsp72 mRNA in focal cerebral ischemia of mice,” Neuroreport, 9, 27–32 (1998).
C. Heurteaux, I. Lauritzen, C. Widmann, and M. Lazdunski, “Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning,” Proc. Natl. Acad. Sci. USA, 92, 4666–4670 (1995).
K. S. Hsu and C. C. Huang, “Protein kinase C inhibitors block generation of anoxia-induced long-term potentiation,” Neuroreport, 9, No. 15, 3525–2529 (1998).
P. J. Hughes, T. Alexi, and S. S. Schreider, “A role for the tumour suppressor gene p53 in regulating neuronal apoptosis,” Neuroreport, 8, No. 15, 5–12 (1997).
P. J. Hughes and R. H. Michell, “Novel inositol-containing phospholipids and phosphates: their synthesis and possible new roles in cellular signalling,” Curr. Opin. Neurobiol., 3 No. 3, 383–400 (1993).
A. J. Hunter, “Calcium antagonists: their role in neuroprotection,” in: Neuroprotective Agents and Cerebral Ischemia, Academic Press (1997), pp. 95–108.
H. Kato, K. Kogure, T. Araki, X. H. Liu, and Y. Itoshina, “Immunohistochemical localization of superoxide dismutase in the hippocampus following ischemia in a gerbil model of ischemic tolerance,” J. Cereb. Blood Flow Metab., 145, 60–70 (1995).
H. Kato, Y. Liu, T. Araki, and K. Kogure, “Temporal profile of the effects of pretreatment with brief cerebral ischemia on the neuronal damage following secondary ischemia in the gerbil: cumulative damage and protective effects,” Brain Res., 553, 238–242 (1991).
H. Kato, Y. Liu, T. Araki, and K. Kogure, “MK-801 (but not anisomycin) inhibits the induction of tolerance to ischemia in gerbil hippocampus,” Neurosci. Lett., 139, 118–121 (1992).
M. S. Kindy, J. P. Carney, R. J. Dempsey, and J. M. Carney, “Ischemic induction of protooncogene expression in the gerbil brain,” J. Mol. Neurosci., 2, No. 4, 217–228 (1991).
T. Kirino, Y. Tsujita, and A. Tamura, “Induced tolerance to ischemia in gerbil hippocampal neurons,” J. Cereb. Blood Flow Metab., 11, 199–307 (1991).
K. Kitagawa, M. Matsumoto, and M. Tgaya, “'Ischemic tolerance' phenomenon found in the brain,” Brain Res., 528, 21–24 (1990).
W. J. Koroshetz and J. V. Bonventre, “Heat shock response in the central nervous system,” Experientia, 50, No. 11-12, 1085–1091 (1994).
S. Krajewski, J. K. Mai, M. Krajewska, M. Sikorska, M. J. Mossakowski, and J. C. Reed, “Up-regulation of Bax protein levels in neurons following cerebral ischemia,” J. Neurosci., 15, 6364–6376 (1995).
Y. Li, M. Chopp, J. H. Garcia, Y. Yoshida, Z. G. Zhang, and S. R. Levine, “Distribution of the 72-kDa heat-shock protein as a function of transient focal cerebral ischemia in the rat,” Stroke, 23, 1292–1298 (1992).
M. D. Linnik, P. Zahos, M. D. Geschwind, and H. J. Federoff, “Expression of bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia,” Stroke, 26, 1670–1674 (1995).
Z. W. Liu and J. C. Fowler, “Phorbol ester alters rat hippocampal neurons response to hypoxia,” Neuroreport, 6, No. 15, 2069–1072 (1995).
Y. Liu, H. Kato, N. Nakata, and K. Kogure, “Temporal profile of heat shock protein 70 synthesis in ischemic tolerance induced by preconditioning ischemia in rat hippocampus,” Neuroscience, 56, No. 4, 921–927 (1993).
J. C. Martinou, M. Dubois-Dauhin, and J. K. Staple, “Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia,” Neuron, 13, 1017–1030 (1994).
I. Martinou, M. Missotten, and P. A. Fernandez, “Bax and Bak proteins require caspase activity to trigger apoptosis in sympathetic neurons,” Neuroreport, 9, No. 1, 15–19 (1998).
K. P. Mayfield and L. G. D'Alecy, “Role of endogenous opioid peptides in the acute adaptation to hypoxia,” Brain Res., 582, No. 2, 226–231 (1992).
K. P. Mayfield, W. Kozak, G. M. Malvin, and F. Porreca, “Hypoxia increases opioid delta receptor expression in mouse brain,” Neurosci., 72, No. 3, 785–789 (1996).
K. Miyashita, H. Abe, and T. Nakajima, “Induction of ischemic tolerance in gerbil hippocampus by pretreatment with focal ischemia,” Neuroreport, 6, 46–48 (1994).
C. E. Murray, R. B. Jennings, and K. A. Reimer, “Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium,” Circulation, 74, 1124–1136 (1986).
N. Nakata, H. Kato, and K. Kogure, “Protective effects of basic fibroblast growth factor against hippocampal neuronal damage following cerebral ischemia in the gerbil,” Brain Res., 605, 354–356 (1993).
T. S. Nowak, J. Ikeda, and T. Nakajima, “70-kDa heat shock protein and c-fos gene expression after transient ischemia,” Stroke, 21, No. 11, Supplement, III107–III111 (1990).
T. Ohtski, M. Matsumoto, and K. Kuwabara, “Influence of oxidative stress on induced tolerance to ischemia in gerbil hippocampal neurons,” Brain Res., 599, 246–252 (1992).
K. L. Pannizon, D. Shin, S. Frautschy, and R. A. Walljs, “Neuroprotection with Bcl-2(20-34) peptide against trauma,” Neuroreport, 9, No. 18, 4131–4136 (1998).
S. Papas, V. Crepel, and Y. Ben-Ary, “The NMDA receptor contributes to anoxic aglycemic induced irreversible inhibition of synaptic transmission,” Brain Res., 607, No. 1-2, 54–60 (1993).
P. A. Pechan, T. Yoshida, and N. Panahian, “Genetically modified fibroblasts producing NGF protect hippocampal neurons after ischemia in the rat,” Neuroreport, 6, No. 4, 669–672 (1995).
H. R. Pelham, “Heat shock and the sorting of luminal ER proteins,” EMBO J., 8, No. 11, 3171–3176 (1989).
R. Rader, G. B. Watson, and T. N. Lanthorn, “Pharmacological characterization of the persistent depolarization induced by experimental ischemia,” Soc. Neurosci. Abstr., 14, 189 (1988).
K. A. Reimer, C. E. Murray, I. Yamasawa, M. L. Hili, and R. B. Jennings, “Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis,” Am. J. Physiol., 251, H1306–H1316 (1986).
F. Ritossa, “A new puffing pattern induced by temperature shock and DNP in Drosophila,” Experientia, 18, 571–573 (1962).
M. Sasahira, T. Lowry, R. P. Simon, and D. A. Greenberg, “Epileptic tolerance: prior seizures protect against seizure-induced neuronal injury,” Neurosci. Lett., 185, 95–98 (1995).
R. Schlingensiepen, H. Terlau, W. Brysch, and K. H. Schlingensiepen, “Differential expression of c-jun, jun B, and jun D in rat hippocampal slices,” Neuroreport, 6, No. 1, 101–104 (1994).
A. Schlurr, K. H. Reid, and M. T. Tseng, “Adaptation of adult brain tissue to anoxia and hypoxia in vitro,” Brain Res., 374, No. 2, 244–248 (1986).
T. Shigeno, T. Mima, and K. Takakura, “Amelioration of delayed neuronal death in the hippocampus by nerve growth factor,” J. Neurosci., 11, 2914–2919 (1991).
K. Shimazaki, A. Ishida, and N. Kawai, “Increase in bcl-2 oncoprotein and the tolerance to ischemia-induced neuronal death in the gerbil hippocampus,” Neurosci. Res., 20, 95–99 (1994).
B. K. Siesjo and F. Bengtsson, “Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis,” J. Cereb. Blood Flow Metab., 9, No. 2, 127–140 (1989).
R. P. Simon, H. Cho, R. Gwinn, and D. H. Lowentein, “The temporal profile of 72-kDa heat-shock protein expression following global ischemia,” J. Neurosci., 11, 881–889 (1991).
J. L. Swain, R. L. Davina, J. J. Hines, J. Greenfield, Jr., and E. W. Holmes, “Repetitive episodes of brief ischemia (12 min) do not produce accumulative depletion of high energy phosphate compounds,” Cardiovasc. Res., 18, 264–269 (1984).
M. Szatkowski and D. Attwell, “Triggering and execution of neuronal death in brain ischemia: two phases of glutamate release by different mechanisms,” Trends Neurosci., 17, No. 9, 359–365 (1994).
G. Tomasevic, M. Shamloo, D. Israel, and T. Wieloch, “Activation of p53 and its target genes p21 (WAF1/Cip1) and PAG608/Wig-1 in ischemic preconditioning,” Mol. Brain Res., 70, No. 2, 304–313 (1999).
A. Tortosa, R. Blanco, and I. Ferrer, “Bcl-2 and Bax protein expression in neurofibrillary tangles in progressive supranuclear palsy,” Neuroreport, 9, No. 6, 1049–1052 (1998).
Y. Uemura, N. M. Kowall, and M. Moskowitz, “Focal ischemia in rats causes time-dependent expression of c-fos protein immunoreactivity in widespread regions of ipsilateral cortex,” Brain Res., 552, No. 1, 99–105 (1991).
F. A. Welsh, D. J. Moyer, and V. A. Harris, “Regional expression of heat shock protein-70 mRNA and c-fos mRNA following focal ischemia in rat brain,” J. Cereb. Blood Flow Metab., 12, 204–212 (1992).
D. Wu and W M. Partridge, “Neuroprotection with noninvasive delivery to the brain,” Neurobiology, 96, 254–259 (1999).
M. Yassin and C. N. Scholfield, “NMDA antagonists increase recovery of evoked potentials from slices of rat olfactory cortex after anoxia,” Brit. J. Pharmacol., 111, No. 4, 1221–1227 (1994).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Samoilov, M.O., Lazarevich, E.V., Semenov, D.G. et al. The Adaptive Effects of Hypoxic Preconditioning of Brain Neurons. Neurosci Behav Physiol 33, 1–11 (2003). https://doi.org/10.1023/A:1021119112927
Issue Date:
DOI: https://doi.org/10.1023/A:1021119112927