Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Preconditioned Dynamic Iteration for Coupled Differential-Algebraic Systems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The network approach to the modelling of complex technical systems results frequently in a set of differential-algebraic systems that are connected by coupling conditions. A common approach to the numerical solution of such coupled problems is based on the coupling of standard time integration methods for the subsystems. As a unified framework for the convergence analysis of such multi-rate, multi-method or dynamic iteration approaches we study in the present paper the convergence of a dynamic iteration method with a (small) finite number of iteration steps in each window. Preconditioning is used to guarantee stability of the coupled numerical methods. The theoretical results are applied to quasilinear problems from electrical circuit simulation and to index-3 systems arising in multibody dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Arnold, A pre-conditioned method for the dynamical simulation of coupled mechanical multibody systems, to appear in: Z. Angew. Math. Mech.

  2. M. Arnold and B. Simeon, Pantograph and catenary dynamics: A benchmark problem and its numerical solution, Appl. Numer. Math., 34 (2000), pp. 345–362.

    Google Scholar 

  3. K. Brenan, S. Campbell, and L. Petzold, Numerical Solution of Initial-value Problems in Differential-algebraic Equations, 2nd ed., SIAM, Philadelphia, 1996.

    Google Scholar 

  4. K. Burrage, Z. Jackiewicz, S. Nørsett, and R. Renaut, Preconditioning waveform relaxation iterations for differential systems, BIT, 36 (1996), pp. 54–76.

    Google Scholar 

  5. P. Deuflhard, E. Hairer, and J. Zugck, One-step and extrapolation methods for differential-algebraic systems, Numer. Math., 51 (1987), pp. 501–516.

    Google Scholar 

  6. W. Duffek, Ein Fahrbahnmodell zur Simulation der dynamischen Wechselwirkung zwischen Fahrzeug und Fahrweg, Tech. Report IB 515–91–18, DLR, D-5000 Köln 90, 1991.

  7. C. W. Gear and D. R. Wells, Multirate linear multistep methods, BIT, 24 (1984), pp. 484–502.

    Google Scholar 

  8. G. Gristede, C. Zukowski, and A. Ruehli, Measuring error propagation in waveform relaxation analysis, IEEE Trans. Circuits Systems Fund. Theory Appl., 46 (1999), pp. 337–348.

    Google Scholar 

  9. M. Günther and M. Arnold, Coupled simulation of partitioned differential-algebraic network models, in preparation.

  10. M. G¨unther and P. Rentrop, Multirate ROW methods and latency of electric circiuts, Appl. Numer. Math., 13 (1993), pp. 83–102.

    Google Scholar 

  11. E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems, 2nd ed, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  12. E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, 2nd ed., Springer-Verlag, Berlin, 1996.

    Google Scholar 

  13. M. Hoschek, P. Rentrop, and Y. Wagner, Network approach and differentialalgebraic systems in technical applications, Surveys Math. Indust., 9 (1999), pp. 49–75.

    Google Scholar 

  14. Z. Jackiewicz and M. Kwapisz, Convergence of waveform relaxation methods for differential-algebraic systems, SIAM J. Numer. Anal., 33 (1996), pp. 2303–2317.

    Google Scholar 

  15. R. Kübler and W. Schiehlen, Two methods of simulator coupling, Math. Comput. Modelling Dynamical Syst., 6 (2000), pp. 93–113.

    Google Scholar 

  16. E. Lelarasmee, A. Ruehli, and A. Sangiovanni-Vincentelli, The waveform relaxation method for time doma in analysis of large scale integrated circuits, IEEE Trans. CAD ofI C and Syst., 1 (1982), pp. 131–145.

    Google Scholar 

  17. R. Lewis, P. Bettess, and E. Hinton, eds., Numerical Methods in Coupled Systems, Wiley Series in Numerical Methods in Engineering, Wiley, Chichester, 1984.

    Google Scholar 

  18. U. Miekkala and O. Nevanlinna, Convergence of dynamic iteration methods for initial value problems, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 459–482.

    Google Scholar 

  19. P. Rentrop, Partitioned Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations, Numer. Math., 47 (1985), pp. 545–564.

    Google Scholar 

  20. R. Roberson and R. Schwertassek, Dynamics of Multibody Systems, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  21. A. Veitl and M. Arnold, Coupled simulation of multibody systems and elastic structures, in Advances in Computational Multibody Dynamics, J. Ambrósio and W. Schiehlen, eds., IDMEC/IST, Lisbon, Portugal, 1999, pp. 635–644.

    Google Scholar 

  22. U. Wever and Q. Zheng, Parallel transient simulation on workstation clusters, in Progress in Industrial Mathematics at ECMI 94, H. Neunzert, ed., Wiley & Teubner, Chichester, 1996, pp. 274–284.

    Google Scholar 

  23. M. Witting and T. Pröpper, Cosimulation of electromagnetic fields and electrical networks in the time domain, Surveys Math. Indust., 9 (1999), pp. 101–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, M., Günther, M. Preconditioned Dynamic Iteration for Coupled Differential-Algebraic Systems. BIT Numerical Mathematics 41, 1–25 (2001). https://doi.org/10.1023/A:1021909032551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021909032551