Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fitting multiplicative models by robust alternating regressions

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In this paper a robust approach for fitting multiplicative models is presented. Focus is on the factor analysis model, where we will estimate factor loadings and scores by a robust alternating regression algorithm. The approach is highly robust, and also works well when there are more variables than observations. The technique yields a robust biplot, depicting the interaction structure between individuals and variables. This biplot is not predetermined by outliers, which can be retrieved from the residual plot. Also provided is an accompanying robust R 2-plot to determine the appropriate number of factors. The approach is illustrated by real and artificial examples and compared with factor analysis based on robust covariance matrix estimators. The same estimation technique can fit models with both additive and multiplicative effects (FANOVA models) to two-way tables, thereby extending the median polish technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Basilevsky A. 1994. Statistical Factor Analysis and Related Methods: Theory and Applications. Wiley & Sons, New York.

    Google Scholar 

  • Becker C. and Gather U. 2001. The largest nonidentifiable outlier: A comparison of multivariate simultaneous outlier identification rules. Computational Statistics and Data Analysis 36: 119–127.

    Google Scholar 

  • Bloomfield P. and Steiger W.L. 1983. Least Absolute Deviations: Theory, Applications, and Algorithms. Birkhäuser, Boston, MA.

    Google Scholar 

  • Campbell N.A. 1982. Robust procedures in multivariate analysis II: Robust canonical variate analysis. Applied Statistics 31: 1–8.

    Google Scholar 

  • Cleveland W.S. 1979. Robust locally weighted regression and smoothing scatter plots. Journal of the American Statistical Association 74: 829–836.

    Google Scholar 

  • Croux C. and Dehon C. 2002. Analyse canonique basee sur des estimateurs robustes de la matrice de covariance. La Revue de Statistique Appliquee 2: 5–26.

    Google Scholar 

  • Croux C. and Haesbroeck G. 1999. Influence function and efficiency of the minimum covariance determinant scatter matrix estimator. Journal of Multivariate Analysis 71: 161–190.

    Google Scholar 

  • Croux C. and Haesbroeck G. 2000. Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies. Biometrika 87: 603–618.

    Google Scholar 

  • Croux C. and Ruiz-Gazen A. 1996. A fast algorithm for robust principal components based on projection pursuit. In: Prat A. (Ed.), COMPSTAT 1996, Proceedings in Computational Statistics. Physica-Verlag, Heidelberg, pp. 211–216.

    Google Scholar 

  • Daigle G. and Rivest L.-P. 1992. A robust biplot. The Canadian Journal of Statistics 20: 241–255.

    Google Scholar 

  • Davies L. 1987. Asymptotic behavior of S-estimators of multivariate location parameters and dispersion matrices. The Annals of Statistics 15: 1269–1292.

    Google Scholar 

  • de Falguerolles A. and Francis B. 1992. Algorithmic approaches for fitting bilinear models. In: Dodge Y. and Whittaker J. (Eds.), COMPSTAT 1992, Proceedings in Computational Statistics, vol. 1. Physica-Verlag, Heidelberg, pp. 77–82.

    Google Scholar 

  • Denis J.-B. and Gower J.C. 1996. Asymptotic confidence regions for biadditive models: Interpreting genotype-environment interactions. Applied Statistics 45: 479–493.

    Google Scholar 

  • Devlin S.J., Gnanadesikan R., and Kettenring J.R. 1981. Robust estimation of dispersion matrices and principal components. Journal of the American Statistical Association 76: 354–362.

    Google Scholar 

  • El Bantli F. and Hallin M. 1999. L1-estimation in linear models with heterogeneous white noise. Statistics and Probability Letters 45: 305–315.

    Google Scholar 

  • Filzmoser P. 1999. Robust principal components and factor analysis in the geostatistical treatment of environmental data. Environmetrics 10: 363–375.

    Google Scholar 

  • Gabriel K.R. 1978. Least squares approximation of matrices by additive and multiplicative models. Journal of the Royal Statistical Society B 40(2): 186–196.

    Google Scholar 

  • Gabriel K.R. 1998. Generalized bilinear regression. Biometrika 85: 689–700.

    Google Scholar 

  • Gabriel K.R. and Zamir S. 1979. Lower rank approximation of matrices by least squares with any choice of weights. Technometrics 21: 489–498.

    Google Scholar 

  • Gauch H.G. 1988. Model selection and validation for yield trial with interaction. Biometrics 44: 705–716.

    Google Scholar 

  • Gifi A. 1990. Nonlinear Multivariate Analysis. Wiley & Sons, Chichester.

    Google Scholar 

  • Gollob H.F. 1968. A statistical modelwhich combines features of factor analytic and analysis of variance techniques. Psychometrika 33: 73–116.

    Google Scholar 

  • Gower J. and Hand D. 1996. Biplots. Chapman & Hall, New York.

    Google Scholar 

  • Hallin M. and Mizera I. 2001. Sample heterogeneity and M-estimation. Journal of Statistical Planning and Inference 93: 139–160.

    Google Scholar 

  • Hoaglin D., Mosteller F., and Tukey J. 1983. Understanding Robust and Exploratory Data Analysis. Wiley & Sons, New York.

    Google Scholar 

  • Johnson R.A. and Wichern D.W. 1998. Applied Multivariate Statistical Analysis, 4th edn. Prentice Hall, New Jersey.

    Google Scholar 

  • Kosfeld R. 1996. Robust exploratory factor analysis. Statistical Papers 37: 105–122.

    Google Scholar 

  • Li G. and Chen Z. 1985. Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo. Journal of the American Statistical Association 80: 759–766.

    Google Scholar 

  • Martens H. and Naes T. 1989. Multivariate Calibration.Wiley & Sons, New York.

    Google Scholar 

  • Pison G., Rousseeuw P.J., Filzmoser P., and Croux C. 2002. Robust factor analysis. Journal of Multivariate Analysis, to appear.

  • Rousseeuw P.J. 1985. Multivariate estimation with high breakdown point. In: Grossmann W. et al. (Eds.), Mathematical Statistics and Applications, vol. B. Reidel, Dordrecht, pp. 283–297.

    Google Scholar 

  • Rousseeuw P.J. and van Zomeren B.C. 1990. Unmasking multivariate outliers and leverage points. Journal of the American Statistical Association 85: 633–639.

    Google Scholar 

  • Rousseeuw P.J. and Van Driessen K. 1999. A fast algorithm for the minimum covariance determinant estimator. Technometrics 41: 212–223.

    Google Scholar 

  • Simpson D.G., Ruppert D., and Carroll R.J. 1992. On one-step GM estimates and stability of inferences in linear regression. Journal of the American Statistical Association 87: 439–450.

    Google Scholar 

  • Tanaka Y. and Odaka Y. 1989a. Influential observations in principal factor analysis. Psychometrika 54(3): 475–485.

    Google Scholar 

  • Tanaka Y. and Odaka Y. 1989b. Sensitivity analysis in maximum likelihood factor analysis. Communications in Statistics-Theory and Methods A 18(11): 4067–4084.

    Google Scholar 

  • Terbeck W. and Davies P. 1998. Interactions and outliers in the two-way analysis of variance. The Annals of Statistics 26: 1279–1305.

    Google Scholar 

  • Ukkelberg Å. and Borgen O. 1993. Outlier detection by robust alternating regressions. Analytica Chimica Acta 277: 489–494.

    Google Scholar 

  • Visuri S., Koivunen V., and Oja H. 2000. Sign and rank covariance matrices. Journal of Statistical Planning and Inference 91: 557–575.

    Google Scholar 

  • Wold H. 1966. Nonlinear estimation by iterative least squares procedures. In: David F.N. (Ed.), Research Papers in Statistics: Festschrift for Jerzy Neyman. John Wiley, New York, pp. 411–444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croux, C., Filzmoser, P., Pison, G. et al. Fitting multiplicative models by robust alternating regressions. Statistics and Computing 13, 23–36 (2003). https://doi.org/10.1023/A:1021979409012

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021979409012