Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Agent-Based Simulation in the Study of Social Dilemmas

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

This review discusses agent-based social simulation(ABSS) in relation tothe study of social dilemmas such as the Prisoner'sDilemma and Tragedy of the Commons. Its aims are to explore theplace of ABSS in relation to other research methods such asmathematical analysis, to familiariseartificial intelligence researchers (particularly those working onmulti-agent systems)with a body of relevant multidisciplinary work, and to suggest directionsfor future ABSS research on social dilemmas.

ABSS research can contribute greatly to the understanding of socialphenomena, but needs to be based on a clear appreciation of the current`state of play' in the areas where it is used. With regard to `thin'(simple, general) simulation models, this primarily means attending towhat has been or could be discovered by mathematical analysis, to workusing other forms of simulation, and to the relevanttheoretical disputes; with regard to `thick' (specific, detailed) models(about which the paper has less to say), linking to the relevant`thin' models and to the empirical evidence. The bulk of ABSS work onsocial dilemmas has been concentratedin quite a narrow – though certainly significant – area (reciprocalaltruism in the Prisoner's Dilemma), and has sometimesbeen seriously flawed by over-ambitious claims, and insufficientattention to analytical approaches – although this same work has beenvery fertile in terms of inspiring further work, both analytical andsimulation-based.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abreu, D. & Rubinstein, A. (1988). The Structure of Nash Equilibrium in Repeated Games with Finite Automata. Econometrica 56: 1259–1281.

    Google Scholar 

  • Andreoni, J. (1988). Why Free Ride? Strategies and Learning in Public Goods Experiments. Journal of Public Economics 37: 291–304.

    Google Scholar 

  • Andreoni, J. & Miller, J. H. (1993). Rational Cooperation in the Finitely Repeated Prisoner's Dilemma: Experimental Evidence. The Economic Journal 103: 570–585.

    Google Scholar 

  • Antona, M., Bousquet, F., LePage, C., Weber, J., Karsenty, A. & Guizol, P. (1998). Economic Theory of Renewable Resource Management: A Multi-Agent System Approach. In Sichman, J. S., Conte, R. & Gilbert, N. (eds.) Multi-Agent Systems and Agent-Based Simulation: First International Workshop MABS'98, 61–78. Berlin: Springer.

    Google Scholar 

  • Ashlock, D., Smucker, M. D., Stanley, E. A. & Tesfatsion, L. (1996). Preferential Partner Selection in an Evolutionary Study of Prisoner's Dilemma. BioSystems 37: 99–125.

    Google Scholar 

  • Axelrod, R. (1980a). Effective Choice in the Prisoner's Dilemma. Journal of Conflict Resolution 24: 3–25.

    Google Scholar 

  • Axelrod, R. (1980b). More Effective Choice in the Prisoner's Dilemma. Journal of Conflict Resolution 24: 379–403.

    Google Scholar 

  • Axelrod, R. (1981). The Emergence of Cooperation among Egoists. American Political Science Review 75: 306–318.

    Google Scholar 

  • Axelrod, R. (1984). The Evolution of Cooperation. Basic Books.

  • Axelrod, R. (1986). An Evolutionary Approach to Norms. American Political Science Review 80: 1095–1111.

    Google Scholar 

  • Axelrod, R. (1987). Evolution of Strategies in the Iterated Prisoner's Dilemma. In Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, Research Notes in Artificial Intelligence, Vol. 24, 32–41. London: Pitman.

    Google Scholar 

  • Bankes, S. (1994). Exploring the Foundations of Artificial Societies: Experiments in Evolving Solutions to Iterated N-player Prisoner's Dilemma. In Brooks, R. A. & Maes, P. (eds.) Artificial Life IV, 337–342. Cambridge MA: MIT Press.

    Google Scholar 

  • Banks, J. S. & Sundaram, R. K. (1990). Repeated Games, Finite Automata, and Complexity. Games and Economic Behavior 2: 97–117.

    Google Scholar 

  • Bendor, J. & Swistak, P. (1997). The Evolutionary Stability of Cooperation. American Political Science Review 91(2): 290–307.

    Google Scholar 

  • Berger, T. (2001). Agent-based Spatial Models Applied to Agriculture: a Simulation Tool for Technology Diffusion, Resource Use Changes and Policy Analysis. Agricultural Economics 25: 245–260.

    Google Scholar 

  • Binmore, K. G. (1994). Game Theory and the Social Contract Volume 1: Playing Fair. MIT Press.

  • Binmore, K. G. (1998a). Game Theory and the Social Contract Volume 2: Just Playing. Cambridge, MA: MIT Press.

    Google Scholar 

  • Binmore, K. G. (1998b). Review of “The Complexity of Cooperation” by Robert Axelrod. Journal of Artificial Societies and Social Simulation 1(1). Online journal, at http://www.soc.surrey.ac.uk/JASSS/JASSS.html.

  • Binmore, K. G. & Samuelson, L. (1992). Evolutionary Stability in Repeated Games Played by Finite Automata. Journal of Economic Theory 57: 278–305.

    Google Scholar 

  • Blackmore, S. (1999). The Meme Machine. Oxford: Oxford University Press.

    Google Scholar 

  • Boehm, C. (1993). Egalitarian Behavior and Reverse Dominance Hierarchy. Current Anthropology 34(3): 227–254.

    Google Scholar 

  • Boerlijst, M. C., Nowak, M. & Sigmund, K. (1997). The Logic of Contrition. Journal of Theoretical Biology 185: 281–293.

    Google Scholar 

  • Bowles, S. & Gintis, H. (2000). The Evolution of Reciprocal Preferences. Working paper available online at http://www.univ.oit/umas.edu/∼gintis/papers.html.

  • Boyd, R. (1989). Mistakes Allow Evolutionary Stability in the Repeated Prisoner's Dilemma Game. Journal of Theoretical Biology 136: 47–56.

    Google Scholar 

  • Boyd, R. & Lorberbaum, J. P. (1987). No Pure Strategy is Evolutionarily Stable in the Repeated Prisoner's Dilemma. Nature 327: 58–59.

    Google Scholar 

  • Boyd, R. & Richerson, P. J. (1988). The Evolution of Reciprocity in Sizable Groups. Journal of Theoretical Biology 132: 337–356.

    Google Scholar 

  • Boyd, R. & Richerson, P. J. (1989). The Evolution of Indirect Reciprocity. Social Networks 11: 213–236.

    Google Scholar 

  • Boyd, R. & Richerson, P. J. (1992). Punishment Allows the Evolution of Cooperation (or Anything Else) in Sizable Groups. Ethology and Sociobiology 13: 171–195.

    Google Scholar 

  • Brauchli, K., Killingback, T. & Doebeli, M. (1999). Evolution of Cooperation in a Spatially Structured Population. Journal of Theoretical Biology 200: 405–417.

    Google Scholar 

  • Bull, L. & Fogarty, T. C. (1995). Artificial Symbiogenesis. Artificial Life 2(3): 269–292.

    Google Scholar 

  • Buss, D. M. (1999). Evolutionary Psychology: The New Science of the Mind. Boston, MA: Allyn and Bacon.

    Google Scholar 

  • Cadsby, C. B. & Maynes, E. (1998). Choosing between a Socially Efficient and Free-Riding Equilibrium: Nurses versus Economics and Business Students. Journal of Economic Behavior and Organization 37: 183–192.

    Google Scholar 

  • Camerer, C. F. (1997). Progress in Behavioral Game Theory. Journal of Economic Perspectives 11(4): 167–188.

    Google Scholar 

  • Carpenter, S., Brock, W. & Hanson, P. (1999). Ecological and Social Dynamics in Simple Models of Ecosystem Management. Conservation Ecology 3(2): article 4. Online journal, at http://www.consecol.org/.

  • Chattoe, E. (1996). Why Are We Simulating Anyway? Some Answers From Economics. In Troitzsch, K. G., Mueller, U., Gilbert, N. & Doran, J. E. (eds.) Social Science Microsimulation, 78–104. Springer.

  • Cohen, M. D., Riolo, R. L. & Axelrod, R. (1999). The Emergence of Social Organization in the Prisoner's Dilemma: How Context-Preservation and other Factors Promote Cooperation. Working Paper 99-01-002, Santa Fe Institute.

  • Conte, R. & Castelfranchi, C. (1995). Cognitive and Social Action. London: UCL Press.

    Google Scholar 

  • Conte, R., Sichman, J. S. & Gilbert, N. (1998). MAS and Social Simulation: A Suitable Commitment. In Sichman, J. S., Conte, R. & Gilbert, N. (eds.) Multi-Agent Systems and Agent-Based Simulation: First International Workshop MABS'98, 1–9. Berlin: Springer.

    Google Scholar 

  • Cooper, B. & Wallace, C. (2000). The Evolution of Partnerships. Sociological Methods and Research 28(3): 365–381.

    Google Scholar 

  • Cooper, R. (1996). Cooperation without Reputation: Experimental Evidence from Prisoner's Dilemma Games. Games and Economic Behavior 12: 187–218.

    Google Scholar 

  • Cronin, H. (1991). The Ant and the Peacock: Altruism and Sexual Selection from Darwin to Today. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Crowley, P. H., Provencher, L., Sloane, S., Dugatkin, L. A., Spohn, B., Rogers, L. & Alfieri, M. (1996). Evolving Cooperation: The Role of Individual Recognition. BioSystems 37: 49–66.

    Google Scholar 

  • Darwin, C. (1968). The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, 1st edn. Harmondsworth, UK: Penguin. Originally published 1859, John Murray, London.

    Google Scholar 

  • Davidsson, P. (2000). Emergent Societies of Information Agents. In Klusch, M. & Kerschberg, L. (eds.) Cooperative Information Agents IV: The Future of Information Agents in Cyberspace, 4th International Workshop, CIA 2000 Proceedings, 143–153. Berlin: Springer.

    Google Scholar 

  • Dawkins, R. (1976). The Selfish Gene, 1st edn. Oxford: Oxford University Press.

    Google Scholar 

  • Deadman, P. J. (1999). Modelling Individual Behaviour and Group Performance in an Intelligent Agent-Based Simulation of the Tragedy of the Commons. Journal of Environmental Management 56: 159–172.

    Google Scholar 

  • Deadman, P. J., Schlager, E. & Gimblett, R. (2000). Simulating Common Pool Resource Management Experiments with Adaptive Agents Employing Alternate Communication Routines. Journal of Artificial Societies and Social Simulation 3(2). Online journal, at http://www.soc.surrey.ac.uk/JASSS/JASSS.html.

  • Deen, S. M. (1997). A Database Perspective to a Cooperation Environment. In Kandzia, P. & Klusch, M. (eds.) Cooperative Information Agents First International Workshop, CIA'97 Proceedings, 19–41. Berlin: Springer.

    Google Scholar 

  • Dessalles, J.-L. (1999). Coalition Factor in the Evolution of Non-Kin Altruism. Advances in Complex Systems 2(2): 143–172.

    Google Scholar 

  • Dieckmann, U., Law, R. & Metz, J. A. J. (eds.) (2000). The Geometry of Ecological Interactions, Cambridge Series in Adaptive Dynamics. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Dodson, S. (2002). Lords of the Ring. The Guardian, 1–3. 21/03/2002, online supplement.

  • Doran, J. E. & Gilbert, N. (1994). Simulating Societies: An Introduction. In Doran, J. E. & Gilbert, N. (eds.) Simulating Societies: The Computer Simulation of Social Phenomena, 1–18. London: UCL Press.

    Google Scholar 

  • Downing, T. E., Moss, S. & Pahl-Wostl, C. (2001). Understanding Climate Policy Using Participatory Agent-Based Social Simulation. In Moss, S. & Davidsson, P. (eds.) Multi-Agent-Based Simulation: Second International Workshop MABS 2000, 198–213. Berlin: Springer.

    Google Scholar 

  • Dugatkin, L. A. (1992). The Evolution of the “Con Artist”. Ethology and Sociobiology 13: 3–18.

    Google Scholar 

  • Dugatkin, L. A. & Wilson, D. S. (1991). Rover: A Strategy for Exploiting Cooperators in a Patchy Environment. American Naturalist 138: 687–701.

    Google Scholar 

  • Durkheim, E. (1964). The Rules of Sociological Method, 8th edn. New York: Free Press. Translated by Sarah A. Solovay and John H. Mueller, edited by George E. G. Catlin.

    Google Scholar 

  • Epstein, J. M. (1997). Zones of Cooperation in the Demographic Prisoner's Dilemma. Working Paper 97-12-094, Santa Fe Institute.

  • Eshel, I., Herreiner, D. K., Samuelson, L., Sansone, E. & Shaked, A. (2000). Cooperation, Mimesis and Local Interaction Sociological Methods and Research 28(3): 341–364.

    Google Scholar 

  • Eshel, I., Samuelson, L. & Shaked, A. (1998). Altruists, Egoists and Hooligans in a Local Interaction Model. American Economic Review 88(1): 157–179.

    Google Scholar 

  • Fagan, B. M. (1990). The Journey from Eden: The Peopling of our World. London: Thames and Hudson.

    Google Scholar 

  • Farrell, J. & Ware, R. (1989). Evolutionary Stability in the Repeated Prisoner's Dilemma. Theoretical Population Biology 36: 161–166.

    Google Scholar 

  • Fehr, E. & Gächter, S. (2000). Cooperation and Punishment. American Economic Review 90(4): 980–994.

    Google Scholar 

  • Ferber, J. (1999). Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Harlow, UK: Addison-Wesley.

    Google Scholar 

  • Ferriere, R. & Michod, R. E. (1996). The Evolution of Cooperation in Spatially Heterogeneous Populations. American Naturalist 147: 692–717.

    Google Scholar 

  • Fischer, K. & Müller, J. P. (1996). A Decision-Theoretic Model for Cooperative Transportation Scheduling. In de Velde, W. V. & Perran, J.W. (eds.) Agents Breaking Away: 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW' 96, 177–189. Berlin: Springer.

    Google Scholar 

  • Flannery, T. F. (1994). The Future Eaters: An Ecological History of the Australasian Lands and People. Sydney: Reed Books.

    Google Scholar 

  • Flood, M. M. (1952). Some Experimental Games. Technical Report RM-789-1, RAND Institute.

  • Flood, M. M. (1958). Some Experimental Games. Management Science 5: 5–26.

    Google Scholar 

  • Frank, R. H., Gilovich, T. & Regan, D. T. (1993). Does Studying Economics Inhibit Cooperation?. Journal of Economic Perspectives 7(2): 159–171.

    Google Scholar 

  • Gale, J., Binmore, K. G. & Samuelson, L. (1995). Learning to be Imperfect: the Ultimatum Game. Games and Economic Behavior 8: 56–90.

    Google Scholar 

  • Gibbons, R. (1997). An Introduction to Applicable Game Theory. Journal of Economic Perspectives 11(1): 127–149.

    Google Scholar 

  • Gilbert, N. & Troitzsch, K. G. (1999). Simulation for the Social Scientist. Buckingham, UK: Open University Press.

    Google Scholar 

  • Gintis, H. (2000a). Beyond Homo economicus: Evidence from Experimental Economics. Ecological Economics 35: 311–322.

    Google Scholar 

  • Gintis, H. (2000b). Strong Reciprocity and Human Sociality. Journal of Theoretical Biology 206: 169–179.

    Google Scholar 

  • Gould, S. J. & Lewontin, R. C. (1979). The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme. Proceedings of the Royal Society of London B 205: 281–288.

    Google Scholar 

  • Grafen, A. (1990a). Biological Signals as Handicaps. Journal of Theoretical Biology 144: 517–546.

    Google Scholar 

  • Grafen, A. (1990b). Sexual Selection Unhandicapped by the Fisher Process. Journal of Theoretical Biology 144: 473–516.

    Google Scholar 

  • Grafen, A. (1998). A Note in Response to S. Siller's Comments. Journal of Theoretical Biology 195: 417–418.

    Google Scholar 

  • Grim, P. (1996). Spatialization and Greater Generosity in the Stochastic Prisoner's Dilemma. BioSystems 37: 3–17.

    Google Scholar 

  • Hales, D. (1998). Stereotyping, Groups and Cultural Evolution: A Case of 'second Order Emergence'?. In Sichman, J. S., Conte, R. & Gilbert, N. (eds.) Multi-Agent Systems and Agent-Based Simulation: First International Workshop MABS'98, 140–155. Berlin: Springer.

    Google Scholar 

  • Hales, D. (2001). Cooperation without Memory or Space: Tags, Groups and the Prisoner's Dilemma. In Moss, S. & Davidsson, P. (eds.) Multi-Agent-Based Simulation: Second International Workshop MABS 2000, 157–166. Berlin: Springer.

    Google Scholar 

  • Halpin, B. (1999). Simulation in Sociology. American Behavioral Scientist 42(10): 1488–1508.

    Google Scholar 

  • Hamilton, W. (1964). The Genetical Evolution of Social Behavior: Parts I and II. Journal of Theoretical Biology 7: 1–16 and 17–52.

    Google Scholar 

  • Hardin, G. (1968). The Tragedy of the Commons. Science 162: 1243–1248.

    Google Scholar 

  • Hardin, G. (1998). Extensions of “The Tragedy of the Commons”. Science 280: 682–683.

    Google Scholar 

  • Hargreaves Heap, S. P. & Varoufakis, Y. (1995). Game Theory: A Critical Introduction. London: Routledge.

    Google Scholar 

  • Hauert, C. & Schuster, H. G. (1997). Effects of Increasing the Number of Players and Memory Size in the Iterated Prisoner's Dilemma: A Numerical Approach. Proceedings of the Royal Society of London B 264: 513–519.

    Google Scholar 

  • Hegselmann, R. (1996). Understanding Social Dynamics: The Cellular Automata Approach. In Troitzsch, K. G., Mueller, U., Gilbert, N. & Doran, J. E. (eds.) Social Science Microsimulation, 282–306. Springer.

  • Henrich, J. (2000). Does Culture Matter in Economic Behavior? Ultimatum Game Bargaining Among the Machiguenga of the Peruvian Amazon. American Economic Review 90(4): 973–979.

    Google Scholar 

  • Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H. & McElreath, R. (2001). In Search of Homo Economicus: Behavoiral Experiments in 15 Small-Scale Societies. American Economic Review 91: 73–78.

    Google Scholar 

  • Herz, A. V. M. (1994). Collective Phenomena in Spatially Extended Evolutionary Games. Journal of Theoretical Biology 169: 65–87.

    Google Scholar 

  • Ho, T.-H. (1996). Finite Automata Play Repeated Prisoner's Dilemma with Information Processing Costs. Journal of Economic Dynamics and Control 20: 173–207.

    Google Scholar 

  • Hobbes, T. (1914). Leviathan. London: J. M. Dent and Sons. Originally published 1651.

    Google Scholar 

  • Hofbauer, J. & Sigmund, K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press.

  • Hoffmann, R. & Waring, N. (1996). The Localization of Interaction and Learning in the Repeated Prisoner's Dilemma. Working Paper 96-08-064, Santa Fe Institute.

  • Hoffmann, R. & Waring, N. C. (1998). Complexity Cost and Two Types of Noise in the Repeated Prisoner's Dilemma. In Smith, G. C., Steele, N. C. & Albrecht, R. F. (eds.) Artificial Neural Nets and Genetic Algorithms: Proceedings of the First International Conference in Norwich, UK, 1997, 619–623. Vienna: Springer-Verlag.

    Google Scholar 

  • Hofstadter, D. & The Fluid Analogies Research Group (1995). Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought. New York: HarperCollins.

    Google Scholar 

  • Holland, J. H. (1992). Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press.

  • Howard, N. (1971). Paradoxes of Rationality: Theory of Metagames and Political Behavior. Cambridge MA: MIT Press.

    Google Scholar 

  • Huberman, B. A. & Glance, N. S. (1993). Evolutionary Games and Computer Simulations. Proceedings of the National Academy of Science, USA 90: 7716–7718.

    Google Scholar 

  • Huberman, B. A. & Glance, N. S. (1998a). Beliefs and Cooperation. In Danielson, P. A. (ed.) Modeling Rationality, Morality, and Evolution, Chapter 11, 210–235. Oxford: Oxford University Press.

    Google Scholar 

  • Huberman, B. A. & Glance, N. S. (1998b). Fluctuating Efforts and Sustainable Cooperation. In Prietula, M., Carley, K. & Gasser, L. (eds.) Simulating Organizations, Chapter 5, 89–103. Cambridge MA: MIT Press.

    Google Scholar 

  • Hutson, V. C. L. & Vickers, G. T. (1995). The Spatial Struggle of Tit-for-Tat and Defect. Philosophical Transactions of the Royal Society of London B 348: 393–404.

    Google Scholar 

  • Ingold, T. (2000). Evolving Skills. In Rose, H. & Rose, S. (eds.) Alas, Poor Darwin: Arguments Against Evolutionary Psychology. London: Jonathan Cape.

    Google Scholar 

  • Jager, W., Janssen, M. A., De Vries, H. J. M., De Greef, J. & Vlek, C. A. J. (2000). Behaviour in Commons Dilemmas: Homo economicus and Homo psychologicus in an Ecological-Economic Model. Ecological Economics 35: 357–379.

    Google Scholar 

  • Janssen, M. & Jager, W. (1999). An Integrated Approach To Simulating Behavioural Processes: A Case Study of The Lock-In of Consumption Patterns. Journal of Artificial Societies and Social Simulation 2(2). Online journal, at http://www.soc.surrey.ac.uk/JASSS/JASSS.html.

  • Johnson, P. E. (1999). Simulation Modelling in Political Science. American Behavioral Scientist 42(10): 1509–1530.

    Google Scholar 

  • Joshi, S., Parker, J. & Bedau, M. A. (1998). Technical Trading Creates a Prisoner's Dilemma: Results from an Agent-Based Model. Working Paper 98-12-115E, Santa Fe Institute.

  • Kahneman, D., Slovic, P. & Tversky, A. (1982). Judgement Under Uncertainty. Cambridge UK: Cambridge University Press.

    Google Scholar 

  • Killingback, T., Doebeli, M. & Knowlton, N. (1999). Variable Investment, the Continuous Prisoner's Dilemma, and the Origin of Cooperation. Proceedings of the Royal Society of London B 266: 1723–1728.

    Google Scholar 

  • Kirchkamp, O. (1996). Spatial Evolution of Automata in the Prisoner's Dilemma. In Troitzsch, K. G., Mueller, U., Gilbert, G. N. & Doran, J. E. (eds.) Social Science Microsimulation, Chapter 15, 307–358. Berlin: Springer.

    Google Scholar 

  • Kirchkamp, O. (1999). Simultaneous Evolution of Learning Rules and Strategies. Journal of Economic Behavior and Organization 40: 295–312.

    Google Scholar 

  • Kirchkamp, O. (2000). Evolution of Learning Rules in Space. In Suleiman, R., Troitzsch, K. G. & Gilbert, G. N. (eds.) Tools and Techniques for Social Science Simulation, Chapter 10, 179–195. Berlin: Physica-Verlag.

    Google Scholar 

  • Kliemt, H. (1996). Simulation and Rational Practice. In Hegselmann, R., Mueller, U. & Troitzsch, K. G. (eds.) Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View, Chapter 2, 13–28. Kluwer.

  • Kraines, D. & Kraines, V. (1993). Learning to Cooperate with Pavlov: An Adaptive Strategy for the Prisoner's Dilemma with Noise. Theory and Decision 26: 47–79.

    Google Scholar 

  • Kraines, D. & Kraines, V. (1995). Evolution of Learning among Pavlov Strategies in a Competitive Environment with Noise. Journal of Conflict Resolution 39: 439–466.

    Google Scholar 

  • Kreps, D. M., Milgrom, P., Roberts, J. & Wilson, R. (1982). Rational Cooperation in the Finitely Repeated Prisoner's Dilemma. Journal of Economic Theory 17: 245–252.

    Google Scholar 

  • Langton, C. G. (1984). Self-Reproduction in Cellular Automata. Physica D 10: 134–144.

    Google Scholar 

  • Lansing, J. S. (2000). Anti-Chaos, Common Property, and the Emergence of Cooperation. In Kohler, T. A. & Gumerman, G. J. (eds.) Dynamics in Human and Primate Societies, 207–223. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press.

  • Lansing, J. S. & Kremer, J. N. (1994). Emergent Properties of Balinese Water Temple Networks: Coadaptation on a Rugged Fitness Landscape. In Langton, C. G. (ed.) Artificial Life III, 201–223, Addison-Wesley.

  • Ledyard, J. O. (1995). Public Goods: A Survey of Experimental Research. In Kagel, J. H. & Roth, A. E. (eds.) Handbook of Experimental Economics, 111–194. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Leimar, O. (1997). Repeated Games: A State Space Approach. Journal of Theoretical Biology 184: 471–498.

    Google Scholar 

  • Liebrand, W. B. G. & Messick, D. M. (1996a). Computer Simulations of Sustainable Cooperation in Social Dilemmas. In Hegselmann, R., Mueller, U. & Troitzsch, K. G. (eds.) Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View, Chapter 1, 235–247. Kluwer.

  • Liebrand, W. B. G. & Messick, D. M. (1996b). Game Theory, Decision Making in Conflicts and Computer Simulations: A Good-Looking Triad. In Troitzsch, K. G., Mueller, U., Gilbert, N. & Doran, J. E. (eds.) Social Science Microsimulation, 211–236, Springer.

  • Lindgren, K. (1997). Evolutionary Dynamics in Game-Theoretic Models. In Arthur, W. B., Durlauf, S. N. & Lane, D. A. (eds.) The Economy as an Evolving Complex System II, Vol. Proceedings Volume XXVII of Studies in the Sciences of Complexity, 337–367. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Lindgren, K. & Nordahl, M. G. (1994). Evolutionary Dynamics of Spatial Games. Physica D 75: 292–309.

    Google Scholar 

  • Linster, B. G. (1992). Evolutionary Stability in the Infinitely Repeated Prisoner's Dilemma Played by Two-state Moore Machines. Southern Economic Journal 58: 880–903.

    Google Scholar 

  • Lomborg, B. (1996). Nucleus and Shield: The Evolution of Social Structure in the Iterated Prisoner's Dilemma. American Sociological Review 61: 278–307.

    Google Scholar 

  • Lorberbaum, J. P. (1994). No Strategy is Evolutionarily Stable in the Repeated Prisoner's Dilemma. Journal of Theoretical Biology 168: 117–130.

    Google Scholar 

  • Luce, R. D. & Raiffa, H. (1957). Games and Decisions: Introduction and Critical Survey. London: John Wiley.

    Google Scholar 

  • Macy, M. W. (1991). Learning to Cooperate: Stochastic and Tacit Collusion in Social Exchange. American Journal of Sociology 97(3): 808–843.

    Google Scholar 

  • Macy, M. W. (1996). Natural Selection and Social Learning in Prisoner's Dilemma. Sociological Methods and Research 25(1): 103–137.

    Google Scholar 

  • Majeski, S., Linden, G., Linden, C. & Spitzer, A. (1997). A Spatial Iterated Prisoner's Dilemma Game Simulation with Movement. In Conte, R., Hegselmann, R. & Terna, P. (eds.) Simulating Social Phenomena, No. 456 in Lecture Notes in Economics and Mathematical Systems, 161–167. Berlin: Springer.

    Google Scholar 

  • Maynard Smith, J. (1964). Group Selection and Kin Selection. Nature 201: 1145–1147.

    Google Scholar 

  • Maynard Smith, J. (1974). The Theory of Games and the Evolution of Animal Conflict. Journal of Theoretical Biology 47: 209–221.

    Google Scholar 

  • Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Maynard Smith, J. (1984). Game Theory Without Rationality. Behavioral and Brain Sciences 7(1): 117–125.

    Google Scholar 

  • Maynard Smith, J. (1998). Review of “Unto Others: The Evolution and Psychology of Unselfish Behavior”. Nature 393: 639–640.

    Google Scholar 

  • Maynard Smith, J. & Price, G. R. (1973). The Logic of Animal Conflict. Nature 246: 15–18.

    Google Scholar 

  • Maynard Smith, J. & Szathmáry, E. (1995). The Major Transitions in Evolution. W.H. Freeman.

  • Messick, D. M. & Liebrand, W. B. G. (1994). Computer Simulations of the Relation between Individual Heuristics and Global Cooperation in Prisoner's Dilemmas. In Schulz, U., Albers, W. & Mueller, U. (eds.): Social Dilemmas and Cooperation, 327–340. Berlin: Springer-Verlag.

    Google Scholar 

  • Messick, D. M. & Liebrand, W. B. G. (1995). Individual Heuristics and the Dynamics of Cooperation in Large Groups. Psychological Review 102(1): 131–145.

    Google Scholar 

  • Midgely, M. (2000). Why Memes?. In Rose, H. & Rose, S. (eds.): Alas, Poor Darwin: Arguments Against Evolutionary Psychology, Chapter 5, 67–84. London: Jonathan Cape.

    Google Scholar 

  • Miller, J. H. (1996). The Coevolution of Automata in the Repeated Prisoner's Dilemma. Journal of Economic Behavior and Organization 29: 87–112.

    Google Scholar 

  • Mitteldorf, J. & Wilson, D. S. (2000). Population Viscosity and the Evolution of Altruism. Journal of Theoretical Biology 204: 481–496.

    Google Scholar 

  • Molander, P. (1985). The Optimal Level of Generosity in a Selfish, Uncertain Environment. Journal of Conflict Resolution 29(4): 611–618.

    Google Scholar 

  • Monbiot, G. (1994). The Tragedy of Enclosure. Scientific American 270(1): 140.

    Google Scholar 

  • Moss, S. (2001). Messy Systems – The Target for Multi Agent Based Simulation. In Moss, S. & Davidsson, P. (eds.) Multi-Agent-Based Simulation: Second International Workshop, MABS 2000, 1–14. Berlin: Springer.

    Google Scholar 

  • Mueller, D. C. (1986). Rational Egoism vs. Adaptive Egoism. Public Choice 51: 3–23.

    Google Scholar 

  • Mukherji, A., Rajan, V. & Slagle, J. R. (1996). Robustness of Cooperation. Nature 379: 125–126.

    Google Scholar 

  • Müller, J. P., Singh, M. P. & Rao, A. S. (eds.) (1999). Intelligent Agents V: Agent Theories, Architectures and Languages, No. 1555 in Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag.

    Google Scholar 

  • Nachbar, J. (1992). Evolution in the Finitely Repeated Prisoner's Dilemma. Journal of Economic Behavior and Organization 19: 307–326.

    Google Scholar 

  • Nash, J. (1951). Non-Cooperative Games. Annals of Mathematics 54: 286–295.

    Google Scholar 

  • Nehaniv, C. L. & Rhodes, J. L. (2000). The Evolution and Understanding of Hierarchical Complexity in Biology from an Algebraic Perspective. Artificial Life 6(1): 45–67.

    Google Scholar 

  • Newman, M. E. J. & Ziff, R. M. (2001). A Fast Monte Carlo Algorithm for Site or Bond Percolation. Working Paper 01-02-010, Santa Fe Institute.

  • Nowak, M. (1990a). An Evolutionarily Stable Strategy may be Inaccessible. Journal of Theoretical Biology 142: 237–241.

    Google Scholar 

  • Nowak, M. (1990b). Stochastic Strategies in the Prisoner's Dilemma. Theoretical Population Biology 38: 93–112.

    Google Scholar 

  • Nowak, M. & Sigmund, K. (1989). Oscillations in the Evolution of Reciprocity. Journal of Theoretical Biology 137: 21–26.

    Google Scholar 

  • Nowak, M. & Sigmund, K. (1992). Tit for Tat in Heterogeneous Populations. Nature 355: 250–252.

    Google Scholar 

  • Nowak, M. & Sigmund, K. (1993). A Strategy of Win-Stay, Lose-Shift that Outperforms Tit-for-Tat in the Prisoner's Dilemma Game. Nature 364: 56–58.

    Google Scholar 

  • Nowak, M. & Sigmund, K. (1998a). The Dynamics of Indirect Reciprocity. Journal of Theoretical Biology 194: 561–574.

    Google Scholar 

  • Nowak, M. & Sigmund, K. (1998b). Evolution of Indirect Reciprocity by Image Scoring. Nature 393: 573–577.

    Google Scholar 

  • Nowak, M. A., Bonhoeffer, S. & May, R. M. (1994). More Spatial Games. International Journal of Bifurcation and Chaos 4(1): 33–56.

    Google Scholar 

  • Nowak, M. A., Bonhoeffer, S. & May, R. M. (1996). Robustness of Cooperation: Reply. Nature 379: 126.

    Google Scholar 

  • Nowak, M. A. & May, R. M. (1992). Evolutionary Chaos and Spatial Games. Nature 359: 826–829.

    Google Scholar 

  • Nowak, M. A. & May, R. M. (1993). The Spatial Dilemmas of Evolution. International Journal of Bifurcation and Chaos 3(1): 35–78.

    Google Scholar 

  • Olson, J. (1965). The Logic of Collective Action, Vol. CXXIV of Harvard Economic Studies. Cambridge MA: Harvard University Press.

    Google Scholar 

  • O'Riordan, C. (2000). A Forgiving Strategy for the Iterated Prisoner's Dilemma. Journal of Artificial Societies and Social Simulation 3(4). Online journal, at http://www.soc.surrey.ac.uk/JASSS/JASSS.html.

  • Ostrom, E., Gardner, R. & Walker, J. (1994). Rules, Games and Common Pool Resources. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Papadimitriou, C. H. & Yannakakis, M. (1994). On Complexity as Bounded Rationality. In Proceedings of the Twenty-Sixth Symposium on Theory of Computation (STOC-94), 726–733. ACM.

  • Pedone, R. & Parisi, D. (1997). In What Kinds of Social Group Can ‘Altruistic’ Behaviors Evolve. In Conte, R., Hegselmann, R. & Terna, P. (eds.) Simulating Social Phenomena, No. 456 in Lecture Notes in Economics and Mathematical Systems, 195–201. Berlin: Springer.

    Google Scholar 

  • Polhill, J. G., Gotts, N. M. & Law, A. N. R. (2001). Imitative Versus Non-Imitative Strategies in a Land Use Simulation. Cybernetics and Systems 32(1–2): 285–307.

    Google Scholar 

  • Popper, K. R. (1966). The Open Society and its Enemies, Volume II, 5th edn. London: Routledge and Kegan Paul.

    Google Scholar 

  • Posch, M. (1997). Win Stay-Lose Shift: An Elementary Learning Rule for Normal Form Games. Working Paper 97-06-056, Santa Fe Institute.

  • Posch, M. (1999). Win Stay-Lose Shift Strategies for Repeated Games – Memory Length, Aspiration Levels and Noise. Journal of Theoretical Biology 198: 183–195.

    Google Scholar 

  • Poundstone, W. (1992). The Prisoner's Dilemma. New York: Doubleday.

    Google Scholar 

  • Probst, D. (1996). On Evolution and Learning in Games. Ph.D. thesis, University of Bonn.

  • Rossi, A., Warglien, M. & Zaninotto, E. (1997). Cooperation as Illusory Hill-Climbing: Co-adaptation and Search in Social Dilemmas. In Conte, R., Hegselmann, R. & Terna, P. (eds.) Simulating Social Phenomena, No. 456 in Lecture Notes in Economics and Mathematical Systems, 169–178. Berlin: Springer.

    Google Scholar 

  • Roth, A. E. (1988). Laboratory Experimentation in Economics: A Methodological Overview. The Economic Journal 98, 974–1031.

    Google Scholar 

  • Roth, A. E. (1995). Bargaining Experiments. In Kagel, J. H. & Roth, A. E. (eds.) Handbook of Experimental Economics, 253–348. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Rouchier, J., Bousquet, F., Barreteau, O., Page, C. L. & Bonnefoy, J.-L. (2001). Multi-Agent Modelling and Renewable Resource Issues: The Relevance of Shared Representations for Interacting Agents. In Moss, S. & Davidsson, P. (eds.) Multi-Agent-Based Simulation: Second International Workshop MABS 2000, 181–197. Berlin: Springer.

    Google Scholar 

  • Routledge, B. R. (1998). Economics of the Prisoner's Dilemma: A Background. In Danielson, P. (ed.) Modelling Rationality, Morality and Evolution, Vol. 7 of Vancouver Studies in Cognitive Science, 92–118. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Rubinstein, A. (1986). Finite Automata Play the Repeated Prisoner's Dilemma. Journal of Economic Theory 39: 83–96.

    Google Scholar 

  • Sacco, P. L. (1997). On the Dynamics of Social Norms. In Bicchieri, C., Jeffrey, R. & Skyrms, B. (eds.) The Dynamics of Norms, Cambridge Studies in Probability, Induction, and Decision Theory, Chapter 3, 47–65. Cambridge UK: Cambridge University Press.

    Google Scholar 

  • Sandholm, T.W. (1999). Distributed Rational Decision Making. In Weiss, G. (ed.) Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. Cambridge MA: MIT Press.

    Google Scholar 

  • Sella, G. & Lachmann, M. (2000). On the Dynamic Persistence of Cooperation: How Lower Individual Fitness Induces Higher Survivability. Journal of Theoretical Biology 206: 465–485.

    Google Scholar 

  • Selten, R. (1983). Evolutionary Stability in Extensive 2-Person Games. Mathematical Social Sciences 5: 269–363.

    Google Scholar 

  • Selten, R. & Hammerstein, P. (1984). Gaps in Harley's Argument on Evolutionarily Stable Learning Rules and in the Logic of “tit for tat”. Behavioral and Brain Sciences 7(1): 115–116.

    Google Scholar 

  • Sen, S., Biswas, A. & Debnath, S. (2000). Believing Others: Pros and Cons. In Proceedings, Fourth International Conference on MultiAgent Systems – ICMAS-2000, 279–285. Los Alamitos, CA: IEEE Press.

    Google Scholar 

  • Sherratt, T. N. & Roberts, G. (1998). The Evolution of Generosity and Choosiness in Cooperative Exchanges. Journal of Theoretical Biology 193: 167–177.

    Google Scholar 

  • Siller, S. (1998). A Note on Errors in Grafen's Strategic Handicap Models. Journal of Theoretical Biology 195: 413–417.

    Google Scholar 

  • Simon, H. A. (1997). Models of Bounded Rationality Volume 3: Empirically Grounded Economic Reason. Cambridge, MA: MIT Press.

    Google Scholar 

  • Simpson, Z. B. (1999). The In-game Economics of Ultima Online. Online at http://www.totempole.net/uoecon/uoecon.html. Presented at Computer Game Developer's Conference, San Jose, CA; Mar 2000.

  • Sipser, M. (1997). Introduction to the Theory of Computation. Boston, MA: PWS Publishing Company.

    Google Scholar 

  • Smith, E., Bowles, S. & Gintis, H. (2000). Costly Signalling and Cooperation. Working paper, available online at http://www.univ.oit/umas.edu/~gintis/papers.html.

  • Sober, E. & Wilson, D. S. (1998). Unto Others: The Evolution and Psychology of Unselfish Behavior. Cambridge MA: Harvard University Press.

    Google Scholar 

  • Stigler, G. J. (1981). Economics or Ethics. In McMurrin, S. M. (ed.) The Tanner Lectures on Human Values, Vol. 2, 145–191. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Sugden, R. (1986). The Economics of Rights, Co-operation and Welfare. Oxford: Basil Blackwell.

    Google Scholar 

  • Sugden, R. (1989). Spontaneous Order. Journal of Economic Perspectives 3(4): 85–97.

    Google Scholar 

  • Taylor, P. & Jonker, L. (1978). Evolutionarily Stable Strategies and Game Dynamics. Mathematical Biosciences 40: 145–156.

    Google Scholar 

  • Tesfatsion, L. & Ashlock, D. (1998). A Friendly Joust of the Minds. Complexity 3(4): 5–6.

    Google Scholar 

  • Thaler, R. H. (1992). The Winner's Curse: Paradoxes and Anomalies of Economic Life. The Free Press.

  • Thébaud, O. & Locatelli, B. (2001). Modelling the Emergence of Resource-Sharing Conventions: An Agent-Based Approach. Journal of Artificial Societies and Social Simulation 4(2). Online journal, at http://www.soc.surrey.ac.uk/JASSS/JASSS.html.

  • Tokoro, M. (ed.) (1996). ICMAS-96: Proceedings, Second International Conference on Multi-Agent Systems. Menlo Park, California: AAAI Press.

    Google Scholar 

  • Trivers, R. L. (1971). The Evolution of Reciprocal Altruism. Quarterly Review of Biology 46: 35–57.

    Google Scholar 

  • Tucker, A. W. (1950). A Two-Person Dilemma. mimeo, Stanford University.

  • Ullmann-Margalit, E. (1977). The Emergence of Norms. Oxford: Oxford University Press.

    Google Scholar 

  • van Lange, P. A. M., Liebrand, W. B. G., Messick, D. M. & Wilke, H. A. M. (1992). Social Dilemmas: The State of the Art 1: Literature Review. In Liebrand, W. B. G., Messick, D. M. & Wilke, H. A. M. (eds.) Social Dilemmas: Theoretical Issues and Research, 3–28. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Veblen, T.: 1899, The Theory of the Leisure Class: An Economic Study of Institutions. New York: Macmillan.

    Google Scholar 

  • Veloso, M., Stone, P. & Han, K. (1998). The CMUnited-97 Robotic Soccer Team: Perception and Multiagent Control. In Sycara, K. P. & Wooldridge, M. (eds.) Proceedings of the Second International Conference on Autonomous Agents, 78–85. ACM.

  • von Neumann, J. (1966). The Theory of Self-Reproducing Automata. University of Illinois Press. Edited by A.W. Burks.

  • von Neumann, J. & Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton NJ: Princeton University Press.

    Google Scholar 

  • Watts, D. J. (1999). Small Worlds: The Dynamics of Networks between Order and Randomness, Princeton Studies in Complexity. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Weisbuch, G. (2000). Environment and Institutions: A Complex Dynamical Systems Approach. Ecological Economics 34: 381–391.

    Google Scholar 

  • Weisbuch, G. & Duchateau-Nguyen, G. (1998). Societies, Cultures and Fisheries from a Modeling Perspective. Journal of Artificial Societies and Social Simulation 1(2). Online journal, at http://www.soc.surrey.ac.uk/JASSS/JASSS.html.

  • Weisbuch, G., Gutowitz, H. & Duchateau-Nguyen, G. (1996). Information Contagion and the Economics of Pollution. Journal of Economic Behavior and Organization 29: 389–407.

    Google Scholar 

  • Weiss, G. (ed.) (1999). Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. Cambridge MA: MIT Press.

    Google Scholar 

  • Williams, G. C. (1966). Adaptation and Natural Selection. Princeton NJ: Princeton University Press.

    Google Scholar 

  • Wilson, D. S. & Sober, E. (1994). Reintroducing Group Selection to the Human Behavioral Sciences. Behavioural and Brain Sciences 17: 585–654.

    Google Scholar 

  • Wooldridge, M. & Jennings, N. (1998). Pitfalls of Agent-Oriented Development. In Sycara, K. P. & Wooldridge, M. (eds.) Agents' 98: Proceedings of the Second International Conference on Autonomous Agents, 385–391. New York, ACM Press.

    Google Scholar 

  • Wooldridge, M. & Jennings, N. R. (1994). Formalizing the Cooperative Problem Solving Process. In Klein, M. (ed.) Proceedings of the 13th International Workshop on Distributed Artificial Intelligence (IWDAI-13), 403–417.

  • Wu, J. & Axelrod, R. (1995). How to Cope with Noise in the Iterated Prisoner's Dilemma. Journal of Conflict Resolution 39: 183–189.

    Google Scholar 

  • Yamagishi, T. & Hayashi, N. (1996). Selective Play: Social Embeddedness of Social Dilemmas. In Liebrand, W. B. G. & Messick, D. M. (eds.) Frontiers in Social Dilemmas Research, 363–384. Berlin: Springer-Verlag.

    Google Scholar 

  • Yamagishi, T. & Takahashi, N. (1994). Evolution of Norms without Metanorms. In Schulz, U., Albers, W. & Mueller, U. (eds.) Social Dilemmas and Cooperation, 311–326. Berlin: Springer-Verlag.

    Google Scholar 

  • Yee, N. (2001). The Norrathian Scrolls: A Study of EverQuest (version 2.5). Online at http://www.nickyee.com/eqt/report.html.

  • Zahavi, A. (1975). Mate Selection: A Selection for a Handicap. Journal of Theoretical Biology 53: 205–214.

    Google Scholar 

  • Zahavi, A. & Zahavi, A. (1997). The Handicap Principle. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Zeggelink, E. P. H., de Vos, H. & Elsas, D. (2000). Reciprocal Altruism and Group Formation: The Degree of Segmentation of Reciprocal Altruists Who Prefer “Old-Helping-Partners”. Journal of Artificial Societies and Social Simulation 3(3). Online journal, at http://www.soc.surrey.ac.uk/JASSS/JASSS.html.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotts, N., Polhill, J. & Law, A. Agent-Based Simulation in the Study of Social Dilemmas. Artificial Intelligence Review 19, 3–92 (2003). https://doi.org/10.1023/A:1022120928602

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022120928602