Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Crossover Critical Behavior in the Three-Dimensional Ising Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The character of critical behavior in physical systems depends on the range of interactions. In the limit of infinite range of the interactions, systems will exhibit mean-field critical behavior, i.e., critical behavior not affected by fluctuations of the order parameter. If the interaction range is finite, the critical behavior asymptotically close to the critical point is determined by fluctuations and the actual critical behavior depends on the particular universality class. A variety of systems, including fluids and anisotropic ferromagnets, belongs to the three-dimensional Ising universality class. Recent numerical studies of Ising models with different interaction ranges have revealed a spectacular crossover between the asymptotic fluctuation-induced critical behavior and mean-field-type critical behavior. In this work, we compare these numerical results with a crossover Landau model based on renormalization-group matching. For this purpose we consider an application of the crossover Landau model to the three-dimensional Ising model without fitting to any adjustable parameters. The crossover behavior of the critical susceptibility and of the order parameter is analyzed over a broad range (ten orders) of the scaled distance to the critical temperature. The dependence of the coupling constant on the interaction range, governing the crossover critical behavior, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. E. Fisher, Scaling, universality, and renormalization group theory, in Lecture Notes in Physics, Vol. 186, F. J. W. Hahne, ed. (Springer, Berlin, 1982), pp. 1–139.

    Google Scholar 

  2. M. S. Green and J. V. Sengers, eds., Critical Phenomena: Proceedings of a Conference Held in Washington, D.C., April 1965, National Bureau of Standards Miscellaneous Publication 273 (U.S. Government Printing Office, Washington, DC, 1966).

    Google Scholar 

  3. M. E. Fisher, ref. 2, pp. 21–25.

  4. M. E. Fisher, ref. 2, pp. 108–115.

  5. P. Debye, ref. 2, p. 130.

  6. M. E. Fisher, ref. 2, p. 132.

  7. E. Luijten, H. W. J. Blöte, and K. Binder, Medium-range interactions and crossover to classical critical behavior, Phys. Rev. E. 54:4626–4636 (1996).

    Google Scholar 

  8. E. Luijten, H. W. J. Blöte, and K. Binder, Nonmonotonic crossover of the effective susceptibility exponent, Phys. Rev. Lett. 79:561–564 (1997).

    Google Scholar 

  9. E. Luijten, H. W. J. Blöte, and K. Binder, Crossover scaling in two dimensions, Phys. Rev. E 56:6540–6556 (1997).

    Google Scholar 

  10. E. Luijten and K. Binder, Nature of crossover from classical to Ising-like critical behavior, Phys. Rev. E 58:R4060-R4063 (1998)

    Google Scholar 

  11. E. Luijten and K. BinderPhys. Rev. E 59:7254(E)(1999).

    Google Scholar 

  12. E. Luijten, Critical properties of the three-dimensional equivalent-neighbor model and crossover scaling in finite systems, Phys. Rev. E 59:4997–5008 (1999).

    Google Scholar 

  13. K. Binder and E. Luijten, Monte Carlo tests of renormalization-group predictions for critical phenomena in Ising models, Phys. Rep. 344:179–253 (2001).

    Google Scholar 

  14. J. F. Nicoll, Critical phenomena of fluids: asymmetric Landau-Ginzburg-Wilson model, Phys. Rev. A 24:2203–2220 (1981).

    Google Scholar 

  15. J. F. Nicoll and J. K. Bhattacharjee, Crossover functions by renormalization-group matching: O(ε2) results, Phys. Rev. B 23:389–401 (1981).

    Google Scholar 

  16. J. F. Nicoll and P. C. Albright, Crossover functions by renormalization-group matching: three-loop results, Phys. Rev. B 31:4576–4589 (1985).

    Google Scholar 

  17. C. Bagnuls and C. Bervillier, Nonasymptotic critical behavior from field theory at d=3: The disordered-phase case, Phys. Rev. B 32:7209–7231 (1985).

    Google Scholar 

  18. C. Bagnuls, C. Bervillier, D. I. Meiron, and B. G. Nickel, Nonasymptotic critical behavior from field theory at d=3 II: The ordered-phase case, Phys. Rev. B 35:3585–3607 (1987).

    Google Scholar 

  19. P. C. Albright, J. V. Sengers, J. F. Nicoll, and M. Ley-Koo, A crossover description for the thermodynamic properties of fluids in the critical region, Int. J. Thermophys. 7:75–85 (1986).

    Google Scholar 

  20. P. C. Albright, Z. Y. Chen, and J. V. Sengers, Crossover from singular to regular thermodynamic behavior of fluids in the critical region, Phys. Rev. B 36:877–880 (1987).

    Google Scholar 

  21. Z. Y. Chen, P. C. Albright, and J. V. Sengers, Crossover from singular to regular classical thermodynamic behavior of fluids, Phys. Rev. A 41:3161–3177 (1990).

    Google Scholar 

  22. Z. Y. Chen, A. Abbaci, S. Tang, and J. V. Sengers, Global thermodynamic behavior of fluids in the critical region, Phys. Rev. A 42:4470–4484 (1990).

    Google Scholar 

  23. M. A. Anisimov, S. B. Kiselev, J. V. Sengers, and S. Tang, Crossover approach to global critical phenomena in fluids, Phys. A 188:487–525 (1992).

    Google Scholar 

  24. J. Luettmer-Strathmann, S. Tang, and J. V. Sengers, A parametric model for the global thermodynamic behavior of fluids in the critical region, J. Chem. Phys. 97:2705–2717 (1992).

    Google Scholar 

  25. M. Y. Belyakov and S. B. Kiselev, Crossover behavior of the susceptibility and the specific heat near a second-order phase transition, Phys. A 190:75–94 (1992).

    Google Scholar 

  26. M. Y. Belyakov, S. B. Kiselev, and A. R. Muratov, Thermodynamic properties over a wide vicinity of the critical point, JETP 77:279–285 (1993).

    Google Scholar 

  27. S. B. Kiselev and J. V. Sengers, An improved parametric crossover model for the thermodynamic properties of fluids in the critical region, Int. J. Thermophys. 14:1–32 (1993).

    Google Scholar 

  28. S. B. Kiselev, Prediction of the thermodynamic properties and the phase behavior of binary mixtures in the extended critical region, Fluid Phase Equilibria 128:1–28 (1997).

    Google Scholar 

  29. A. Pelissetto, P. Rossi, and E. Vicari, Mean-field expansion for spin models with medium-range interactions, Nuclear Phys. B 554[FS]:552–606 (1999).

    Google Scholar 

  30. I. Hahn, F. Zhong, M. Barmatz, R. Haussmann, and J. Rudnick, Crossover behavior of the isothermal susceptibility near the He3 critical point, Phys. Rev. E 63:055104(2001).

    Google Scholar 

  31. M. A. Anisimov and J. V. Sengers, Critical and crossover phenomena in fluids and fluid mixtures, in Supercritical Fluids-Fundamentals and Applications, E. Kiran, P. G. Debenedetti, and C. J. Peters, eds. (Kluwer, Dordrecht, 2000), pp. 89–121.

    Google Scholar 

  32. M. A. Anisimov and J. V. Sengers, Critical region, in Equations of State for Fluids and Fluid Mixtures, J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. White, Jr., eds. (Elsevier, Amsterdam, 2000), pp. 381–434.

    Google Scholar 

  33. S. Tang, J. V. Sengers, and Z. Y. Chen, Nonasymptotic critical thermodynamical behavior of fluids, Phys. A 179:344–377 (1991).

    Google Scholar 

  34. V. A. Agayan, M. A. Anisimov, and J. V. Sengers, Crossover parametric equation of state for Ising-like systems, Phys. Rev. E 64:026125(2001).

    Google Scholar 

  35. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, Oxford, 1996).

    Google Scholar 

  36. A. J. Liu and M. E. Fisher, The three-dimensional Ising model revisited numerically, Phys. A 156:35–76 (1989).

    Google Scholar 

  37. R. Guida and J. Zinn-Justin, Critical exponents of the N-vector model, J. Phys. A 31:8103–8121 (1998).

    Google Scholar 

  38. M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems, Phys. Rev. E 60:3526–3563 (1999).

    Google Scholar 

  39. S.-Y. Zinn and M. E. Fisher, Universal surface-tension and critical-isotherm amplitude ratios in three dimensions, Phys. A 226:168–180 (1996).

    Google Scholar 

  40. V. A. Agayan, Crossover Critical Phenomena in Simple and Complex Fluids, Ph.D. thesis, (Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, 2000).

    Google Scholar 

  41. A. D. Bruce and D. J. Wallace, Crossover behavior and effective critical exponents in isotropic and anisotropic Heisenberg systems, J. Phys. A 9:1117–1132 (1976).

    Google Scholar 

  42. T. S. Chang, D. D. Vvedensky, and J. F. Nicoll, Differential renormalization-group generators for static and dynamic critical phenomena, Phys. Rep. 217:279–362 (1992).

    Google Scholar 

  43. M. A. Anisimov, E. Luijten, V. A. Agayan, J. V. Sengers, and K. Binder, Shape of crossover between mean-field and asymptotic critical behavior in a three-dimensional Ising lattice, Phys. Lett. A 264:63–67 (1999).

    Google Scholar 

  44. M. Plischke and B. Bergersen, Equilibrium Statistical Physics, 2nd Ed. (World Scientific, Singapore, 1997).

    Google Scholar 

  45. M. E. Fisher and R. J. Burford, Theory of critical-point scattering and correlations. I. The Ising model, Phys. Rev. 156:583–622 (1967).

    Google Scholar 

  46. J. S. Kouvel and M. E. Fisher, Detailed magnetic behavior of nickel near its Curie point, Phys. Rev. 136:A1626-A1632 (1964).

    Google Scholar 

  47. A. J. Liu and M. E. Fisher, On the correction to scaling in three-dimensional Ising models, J. Stat. Phys. 58:431–442 (1990).

    Google Scholar 

  48. M. A. Anisimov, A. A. Povodyrev, V. D. Kulikov, and J. V. Sengers, Nature of crossover between Ising-like and mean-field critical behavior in fluids and fluid mixtures, Phys. Rev. Lett. 75:3146–3149 (1995).

    Google Scholar 

  49. S. Caraccio, M. S. Causo, A. Pelissetto, P. Rossi, and E. Vicari, Crossover scaling from classical to non-classical critical behavior, Nucl. Phys. Proc. Suppl. 73:757–762 (1999).

    Google Scholar 

  50. M. E. Fisher, Long-range crossover and "nonuniversal" exponents in micellar solutions, Phys. Rev. Lett. 57:1911–1914 (1986).

    Google Scholar 

  51. Y. B. Melnichenko, M. A. Anisimov, A. A. Povodyrev, G. D. Wignall, J. V. Sengers, and W. A. Van Hook, Sharp crossover of the susceptibility near the critical demixing point, Phys. Rev. Lett. 79:5266–5269 (1997).

    Google Scholar 

  52. M. A. Anisimov, A. F. Kostko, and J. V. Sengers, Competition of mesoscales and crossover to tricriticality in polymer solutions, Phys. Rev. E 65:051805(2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.C., Anisimov, M.A., Sengers, J.V. et al. Crossover Critical Behavior in the Three-Dimensional Ising Model. Journal of Statistical Physics 110, 591–609 (2003). https://doi.org/10.1023/A:1022199516676

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022199516676