Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Energy dependence of electron trapping in a solar flare

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Observations of an energy-dependent asymmetry in footpoint hard X-ray emission by RHESSI for the M4.0 solar flare of 17 March 2002 allows us to probe the dynamics of particle transport with energy and time. The presence of such an asymmetry is most readily explained by the effects of a converging magnetic field with different rates of convergence at the different footpoints, as would be expected from realistic surface field distributions. Such a geometry has been discussed in the context of a trap-plus-precipitation model where the transport of energetic particles in the flare is governed by the precipitation out of the coronal trap via collisions, wave-particle interactions or some other scattering process, into the high-density chromosphere. Comparison of RHESSI observations with a trap-plus-precipitation model allows us to use the energy dependence of the asymmetry and the observed ratio of footpoint to coronal emission at the different energies to assess the role of the trapping in the transport of energetic electrons and to probe the nature of the particle precipitation process inside the loss cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, D., Metcalf, T.R. Energy dependence of electron trapping in a solar flare. Sol Phys 210, 323–340 (2002). https://doi.org/10.1023/A:1022457413628

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022457413628

Keywords