Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Some Modified Runge-Kutta Methods for the Numerical Solution of Initial-Value Problems with Oscillating Solutions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Two new modified Runge-Kutta methods with minimal phase-lag are developed for the numerical solution of initial-value problems with oscillating solutions which can be analyzed to a system of first order ordinary differential equations. These methods are based on the well known Runge-Kutta RK5(4)7FEq1 method of Higham and Hall (1990) of order five. Also, based on the property of the phase-lag a new error control procedure is introduced. Numerical and theoretical results show that this new approach is more efficient compared with the well known Runge-Kutta Dormand-Prince RK5(4)7S method [see Dormand and Prince (1980)] and the well known Runge-Kutta RK5(4)7FEq1 method of Higham and Hall (1990).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Brusa, L., and Nigro, L. (1980). A one-step method for direct integration of structural dynamics equations, Int'l. J. Number. Methods Engrg. 15, 685-699.

    Google Scholar 

  • Chawla, M. M., and Rao, P. S. (1984). A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems, J. Comput. Appl. Math. 11, 277-281.

    Google Scholar 

  • Chawla, M. M., and Rao, P. S. (1986). A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems II. Explicit method, J. Comput. Appl. Math. 15, 329-337.

    Google Scholar 

  • Chawla, M. M., and Rao, P. S. (1987). An explicit sixth-order method with phase-lag of order eight for y″ = f(t, y), J. Comput. Appl. Math. 17, 365-368.

    Google Scholar 

  • Chawla, M. M., and Rao, P. S., and Neta, B. (1986). Two-step fourth order P-stable methods with phase-lag of order six for y″ = f(t, y), J. Comput. Appl. Math. 16, 233-236.

    Google Scholar 

  • Coleman, J. P. (1989). Numerical methods for y″ = f(x, y) via rational approximation for the cosine, IMA J. Number. Anal. 9, 145-165.

    Google Scholar 

  • Dormand, J. R., and Prince, P. J. (1980). A family of embedded Runge-Kutta formula, J. Comput. Appl. Math. 6, 19-26.

    Google Scholar 

  • Higham, D. J., and Hall, G. (1990). Embedded Runge-Kutta formula with stable equilibrium states, J. Comput. Appl. Math. 29, 25-33.

    Google Scholar 

  • Fehlberg, E. (undated). Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems, NASA Technical Report 315.

  • Raptis, A. D., and Simos, T. E. (1990). A four-step phase fitted method for the numerical integration of second order initial-value problems, BIT 31, 89-121.

    Google Scholar 

  • Sideridis, A. B., and Simos, T. E. (1992). A low order embedded Runge-Kutta method for periodic initial-value problems, J. Comput. Appl. Math. 44, 235-244.

    Google Scholar 

  • Simos, T. E. (1993). Runge-Kutta interpolants with minimal phase-lag, Comput. Math. Appl. 26, 43-49.

    Google Scholar 

  • Simos, T. E. (1991). A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems, Int'l. J. Comput. Math. 39, 135-140.

    Google Scholar 

  • Simos, T. E., and Raptis, A. D. (1990). Numerov-type methods with minimal phase-lag for the numerical integration of the one-dimensional Schrödinger equation, Computing 45, 175-181.

    Google Scholar 

  • Simos, T. E. (1995). Modified Runge-Kutta Fehlberg methods for periodic initial-value problems, Japan J. Indust. Appl. Math. 12, 109-122.

    Google Scholar 

  • Thomas, R. M. (1984). Phase properties of high order, almost P-stable formula, BIT 24, 225-238.

    Google Scholar 

  • van der Houwen, P. J. (1977). Construction of Integration Formulas for Initial Value Problems, North-Holland, Amsterdam.

    Google Scholar 

  • van der Houwen, P. J., and Sommeijer, B. P. (1987a). Predictor-corrector methods for periodic second-order initial value problems, IMA J. Number. Anal. 7, 407-422.

    Google Scholar 

  • van der Houwen, P. J., and Sommeijer, B. P. (1987b). Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions, SIAM J. Number. Anal. 24, 595-617.

    Google Scholar 

  • van der Houwen, P. J., and Sommeijer, B. P. (1989a). Diagonally implicit Runge-Kutta-Nyström methods for oscillatory problems, SIAM J. Number. Anal. 26, 414-429.

    Google Scholar 

  • van der Houwen, P. J., and Sommeijer, B. P. (1989b). Phase-lag analysis of implicit Runge-Kutta methods, SIAM J. Number. Anal. 26, 214-229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simos, T.E. Some Modified Runge-Kutta Methods for the Numerical Solution of Initial-Value Problems with Oscillating Solutions. Journal of Scientific Computing 13, 51–63 (1998). https://doi.org/10.1023/A:1023204727185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023204727185