Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Splitting Method for Unsteady Incompressible Viscous Fluids Imposing No Boundary Conditions on Pressure

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a time-advancing scheme for the discretization of the unsteady incompressible Navier-Stokes equations. At any time step, we are able to decouple velocity and pressure by solving some suitable elliptic problems. In particular, the problem related with the determination of the pressure does not require boundary conditions. The divergence free condition is imposed as a penalty term, according to an appropriate restatement of the original equations. Some experiments are carried out by approximating the space variables with the spectral Legendre collocation method. Due to the special treatment of the pressure, no spurious modes are generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Balachandar, S., and Madabhushi, R. K. (1994). Spurious modes in spectral collocation methods with two nonperiodic directions, J. Comput. Physics 113, 151-153.

    Google Scholar 

  • Boffi, D., and Funaro, D. (1994). An alternative approach to the analysis of the Navier-Stokes equations, J. Scient. Comput. 9(1), 1-16.

    Google Scholar 

  • Bernardi, C., and Maday, Y. (1989). Approximation results for spectral methods with domain decomposition, Appl. Numer. Math. 6, 35-52.

    Google Scholar 

  • Boyd, J. P. (1989). Chebyshev and Fourier Spectral Methods, Lecture Notes in Engineering, Springer, New York.

    Google Scholar 

  • Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1988). Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer-Verlag, New York.

    Google Scholar 

  • Churbanov, A. G., Pavlov, A. N., and Vabishchevich, P. N. (1995). Operator-splitting methods for the uncompressible Navier-Stokes equations on non-staggered grids. Part 1: first-order schemes, Int'l. J. Numer. Methods Fluids, 21, 617-640.

    Google Scholar 

  • Fortin, M. (1993). Finite element solution of the Navier-Stokes equations, Acta Numerica, pp. 239-284.

  • Funaro, D. (1992). Polynomial Approximation of Differential Equations, Lecture Notes in Physics, Vol. m.8, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Funaro, D. (1993). A new scheme for the approximation of advection-diffusion equations by collocation, SIAM J. Numer. Anal. 30(6), 1664-1676.

    Google Scholar 

  • Funaro, D. (1997). Spectral Element for Transport-Dominated Equations, LNCSE no. 1, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Gresho, P. M. (1991). Incompressible fluid dynamics: some fundamental formulation issues, Ann. Rev. Fluid Mechanics 23, 413-453.

    Google Scholar 

  • Mansutti, D., Graziani, G., and Piva, R. (1991). A discrete vector potential model for unsteady incompressible viscous flows, J. Comput. Physics 92, 1.

    Google Scholar 

  • Montigny-Rannou, F., and Morchoisne, Y. (1987). A spectral method with staggered grid for incompressible Navier-Stokes equation, Int'l. J. Numer. Methods in Fluids 7, 7-175.

    Google Scholar 

  • Orszag, S. A., Israeli, M., and Deville, M. O. (1986). Boundary conditions for incompressible flows, J. Sci. Computing 1(1), 75.

    Google Scholar 

  • Peyret, R., and Taylor, T. D. (1983). Computational Methods for Fluid Flow, Springer-Verlag, New York.

    Google Scholar 

  • Stella, F., and Guj, G. (1989). Vorticity-velocity formulation in the computation of flows in multi-connected domains, Int'l. J. Numer. Meth. Fluids 9(10), 1285-1298.

    Google Scholar 

  • Taylor, G. I. (1923). Philos. Mag. 46, 671-703.

    Google Scholar 

  • Wong, A. K., and Reizes, J. A. (1986). The vector potential in the numerical solution of three-dimensional fluid dynamics problems in multiply connected regions, J. Comput. Phys. 62(1), 124-142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funaro, D., Giangi, M. & Mansutti, D. A Splitting Method for Unsteady Incompressible Viscous Fluids Imposing No Boundary Conditions on Pressure. Journal of Scientific Computing 13, 95–104 (1998). https://doi.org/10.1023/A:1023208828093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023208828093