Abstract
We propose a domain embedding method to solve second order elliptic problems in arbitrary two-dimensional domains. This method can be easily extended to three-dimensional problems. The method is based on formulating the problem as an optimal distributed control problem inside a rectangle in which the arbitrary domain is embedded. A periodic solution of the equation under consideration is constructed easily by making use of Fourier series. Numerical results obtained for Dirichlet problems are presented. The numerical tests show a high accuracy of the proposed algorithm and the computed solutions are in very good agreement with the exact solutions.
Similar content being viewed by others
References
G.P. Astrakmantsev, Methods of fictitious domains for a second order elliptic equation with natural boundary conditions, U.S.S.R. Comput. Math. Math. Phys. 18 (1978) 114–121.
C. Atamian, Q.V. Dinh, R. Glowinski, J. He and J. Périaux, On some imbedding methods applied to fluid dynamics and electro-magnetics, Comput. Methods Appl. Mech. Engrg. 91 (1991) 1271–1299.
J. Blum, Identification et contrôle de l'équilibre du plasma dans un Tokamak, in: Modelos Matematicos en Fisica de Plasmas, eds. J.I. Diaz and A. Galindo, Memorias de la Real Academia de Ciencias, Serie de Ciencias Exactas, t. xxx (1995) pp. 23–48.
C. Borgers, Domain embedding methods for the Stokes equations, Numer. Math. 57(5) (1990) 435–452.
M. Briscolini and P. Santangelo, Development of the mask method for incompressible unsteady flows, J. Comput. Phys. 84 (1989) 57–75.
B.L. Buzbee, F.W. Dorr, J.A. George and G.H. Golub, The direct solution of the discrete Poisson equation on irregular regions, SIAM J. Numer. Anal. 8 (1971) 722–736.
J. Daňková and J. Haslinger, Numerical realization of a fictitious domain approach used in shape optimization. I. Distributed controls, Appl. Math. 41(2) (1996) 123–147.
E.J. Dean, Q.V. Dinh, R. Glowinski, J. He, T.W. Pan and J. Périaux, Least squares/domain imbedding methods for Neumann problems: Applications to fluid dynamics, in: Fifth Internat. Symposium on Domain Decomposition Methods for Partial Differential Equations, eds. D.E. Keyes, T.F. Chan, G. Meurant, J.S. Scroggs and R.G. Voigteds (SIAM, Philadelphia, PA, 1991) pp. 451–475.
Q.V. Dinh, R. Glowinski, J. He, T.W. Pan and J. Périaux, Lagrange multiplier approach to fictitious domain methods: Applications to fluid dynamics and electro-magnetics, in: Fifth Internat. Symposium on Domain Decomposition Methods for Partial Differential Equations, eds. D.E. Keyes, T.F. Chan, G. Meurant, J.S. Scroggs and R.G. Voigteds (SIAM, Philadelphia, PA, 1991) pp. 151–194.
M. Elghaoui and R. Pasquetti, A spectral embedding method applied to the advection–diffusion equation, J. Comput. Phys. 125 (1996) 464–476.
M. Elghaoui and R. Pasquetti, Mixed spectral boundary element embedding algorithms for the Navier–Stokes equations in the vorticity-stream function formulation, J. Comput. Phys. 153 (1999) 82–100.
S.A. Finogenov and Y.A. Kuznetsov, Two-stage fictitious component methods for solving the Dirichlet boundary value problem, Soviet J. Numer. Anal. Math. Modelling 3 (1988) 301–323.
V. Girault, R. Glowinski and H. Lopez, Error analysis of a finite element realization of a fictitious domain/domain decomposition method for elliptic problems, East–West J. Numer. Math. 5(1) (1997) 35–56.
R. Glowinski and Y. Kuznetsov, On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method, C. R. Acad. Sci. Paris Sér. Math. 327(7) (1998) 693–698.
R. Glowinski, T.-W. Pan, T.I. Hesla, D.D. Joseph and J. Périaux, A fictitious domain method with distributed Lagrange multipliers for the numerical simulation of a particulate flow, in: Domain Decomposition Methods 10, Boulder, CO, 1997, Contemporary Mathematics, Vol. 218 (Amer. Math. Soc., Providence, RI, 1998) pp. 121–137.
R. Glowinski, T.-W. Pan and J. Périaux, Lagrange multiplier/fictitious domain method for the Dirichlet problem generalization to some flow problems, Japan J. Indust. Appl. Math. 12(1) (1995) 87–108.
R. Glowinski, T.-W. Pan and J. Périaux, Fictitious domain/Lagrange multiplier methods for partial differential equations, in: Domain-Based Parallelism and Problem Decomposition Methods in Computational Science and Engineering (SIAM, Philadelphia, PA, 1995) pp. 177–192.
J. Haslinger, Fictitious domain approaches in shape optimization, in: Computational Methods for Optimal Design and Control, Arlington, VA, 1997, Progress in Systems and Control Theory, Vol. 24 (Birkhäuser, Boston, MA, 1998) pp. 237–248.
J. Haslinger and A. Klarbring, Fictitious domain/mixed finite element approach for a class of optimal shape design problems, RAIRO Modél. Math. Anal. Numér. 29(4) (1995) 435–450.
J. Haslinger and R.A.E. Makinen, Shape optimization of materially nonlinear bodies in contact, Appl. Math. 42(3) (1997) 171–193.
J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations (Springer, Berlin, 1971).
G.I. Marchuk, Y.A. Kuznetsov and A.M. Matsokin, Fictitious domain and domain decomposition methods, Soviet J. Numer. Anal. Math. Modelling 1 (1986) 3–35.
P. Neittaanmäki and D. Tiba, An embedding of domain approach in free boundary problems and optimal design, SIAM J. Control Optim. 33(5) (1995) 1587–1602.
D.P. O'Leary and O. Widlund, Capacitance matrix methods for the Helmholtz equation on general three-dimensional regions, Math. Comp. 3 (1979) 849–879.
W. Proskurowsky and O.B. Widlund, On the numerical solution of Helmholtz equation by the capacitance matrix method, Math. Comp. 30 (1979) 433–468.
D.P. Young, R.G. Melvin, M.B. Bieterman, F.T. Johnson, S.S. Samanth and J.E. Bussolety, A locally refined finite rectangular grid finite element method. Application to computational physics, J. Comput. Phys. 92 (1991) 1–66.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Badea, L., Daripa, P. On a Fourier Method of Embedding Domains Using an Optimal Distributed Control. Numerical Algorithms 32, 261–273 (2003). https://doi.org/10.1023/A:1024002802603
Issue Date:
DOI: https://doi.org/10.1023/A:1024002802603