Abstract
The constant γ in the strengthened Cauchy–Bunyakowski–Schwarz (C.B.S.) inequality plays a crucial role in the convergence rate of multilevel iterative methods as well as in the efficiency of a posteriori error estimators, that is the framework of finite element approximations of systems of partial differential equations. We consider an approximation of general systems of linear partial differential equations in R 3. Concerning a multilevel convergence rate corresponding to nested general tetrahedral meshes of size h and 2h, we give an estimate of this constant for general three-dimensional cases.
Similar content being viewed by others
References
B. Achchab, Estimations d'erreur a posteriori, éléments finis mixtes hiérarchiques, méthodes de stabilisation et méthodes multiniveaux, Thèse de doctorat, Université Claude Bernard-Lyon 1 (1995).
B. Achchab, Estimateurs d'erreur a posteriori, éléments finis mixtes, hybrides et anisotropes. Méthodes de décomposition de domaines et méthodes multiniveaux. Application à la résolution numérique performante des équations aux dérivées partielles, Habilitation universitaire, LERMA, EMI-Rabat (2002).
B. Achchab and A. Agouzal, Formulations mixtes augmentées. Applications, Math. Modelling Numer. Anal. 33(3) (1999) 459–478.
B. Achchab, A. Agouzal, J. Baranger and J.F. Maitre, Estimations d'erreur a posteriori en éléments finis hiérarchique. Application aux éléments finis mixtes, Numer Math. 80 (1998) 159–179.
B. Achchab, O. Axelsson, A. Laayouni and A. Souissi, Strengthened Cauchy–Bunyakowski–Schwarz inequality for a three-dimensional elasticity system, Numer. Linear Algebra Appl. 8(3) (2001) 191–205.
B. Achchab, O. Axelsson, A. Laayouni and A. Souissi, A preconditioning method for systems of linear partial differential equations (submitted).
B. Achchab and J.F. Maitre, Estimate of the constant in two strengthened C.B.S inequalities for F.E.M systems of 2D elasticity. Application to multilevel methods and a posteriori error estimators, Numer. Linear Algebra Appl. 3(2) (1996) 147–159.
O. Axelsson, On multigrid methods of the two-level type, in: Multigrid Methods, Proceedings, Köln-Porz, 1981, eds.W. Hackbusch and U. Trottenberg, Lecture Notes in Mathematics, Vol. 960 (Springer, New York, 1982) pp. 352–367.
O. Axelsson, Stabilization of algebraic multilevel iteration methods; additive methods, Numer. Algorithms 21 (1999) 23–47.
O. Axelsson and V.A. Barker, Finite Element Solution of Boundary Value Problems: Theory and Computation (Academic Press, Orlando, 1984).
O. Axelsson and R. Blaheta, Two simple derivations of universal bounds for the C.B.S. inequality constant (to appear).
O. Axelsson and I. Gustafsson, Preconditioning and two-level multigrid methods of arbitrary degree of approximation, Math. Comp. 40 (1983) 219–242.
O. Axelsson and P. Vassilevski, Algebraic multilevel preconditioning methods I, Numer. Math. 56 (1989) 157–177.
O. Axelsson and P. Vassilevski, Algebraic multilevel preconditioning methods II, SIAM J. Numer. Anal. 67 (1990) 1569–1590.
O. Axelsson and P. Vassilevski, A survey of a class of algebraic multilevel iteration methods for positive definite symmetric matrices, in: Numerical Mathematics and Advanced Application, eds. P. Neittaanmäki, T. Tiihonen and P. Tarvainen (Worlds Scientific, Singapore, 2000) pp. 16–30.
R. Bank and T. Dupont, Analysis of a two-level scheme for solving finite element equations, Technical Report CNA-159, Center for Numerical Analysis, Unversity of Texas, Austin, TX (1980).
R. Bank, T. Dupont and H. Yserentant, The hierarchical basis multigrid method, Numer. Math. 52 (1988) 427–458.
R.E. Bank and R.K. Smith, A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal. 30 (1993) 921–935.
R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985) 283–301.
J. Bey, Tetrahedral grid refinement, Computing 55 (1995) 355–378.
D. Braess, The condition number of a multigrid method for solving the Poisson equation, Numer. Math. 37 (1981) 387–404.
D. Braess, The convergence rate of a multigrid method with Gauss–Seidel relaxation for the Poisson equation, in: Multigrid Methods, Proceedings, Köln-Porz, 1981, eds. W. Hackbusch and U. Trottenberg, Lecture Notes in Mathematics, Vol. 960 (Springer, New York, 1982) pp. 368–387.
J.H. Bramble, R.E. Ewing, J.E. Pasciak and A.H. Schatz, A preconditioning technique for the efficient solution of problems with local grid refinement, Comput. Methods Appl. Mech. Engrg. 67 (1988) 149–159.
V. Eijkhout and P. Vassilevski, The role of the strengthened Cauchy–Bunyakowski–Schwarz inequality in multilevel methods, SIAM Rev. 33 (1991) 405–419.
M. Jung and J.F. Maitre, Some remarks on the constant in the strengthened CBS inequality: Estimate for hierarchical finite element discretization of elasticity problems, Numer. Methods Partial Differential Equations 15(4) (1999) 469–488.
J.F. Maitre and F. Musy, The contraction number of a class of two-level methods; an exact evaluation for some finite element subspaces and model problems, in: Multigrid methods, Proceedings, Köln-Porz, 1981, eds.W. Hackbusch and U. Trottenberg, Lecture Notes in Mathematics, Vol. 960 (Springer, New York, 1982) pp. 535–544.
S.D. Margenov, Upper bound of the constant in the strengthened C.B.S inequality for FEM 2D elasticity equations, Numer. Linear Algebra Appl. 1(1) (1994) 65–74.
S. McCormick, Fast adaptive composite grid (FAC)methods: Theory for the variational case, Comput. Suppl. 5 (1984) 115–121.
O. Meg, Hierarchical basis preconditioners for second order elliptic problems in three dimensions, Technical Report No. 89-3, Department of Applied Mathematics, University of Washington (1989).
P. Vassilevski, Nearly optimal iterative methods for solving finite element elliptic equations based on the multilevel splitting of the matrix, Technical Report 1989/1990, Institute for Scientific Computing, University of Wyoming, Laramie, WY (1989).
H. Yserentant, On the multilevel splitting of finite element spaces, Numer. Math. 49 (1986) 379–412.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Achchab, B., Achchab, S., Axelsson, O. et al. Upper Bound of the Constant in Strengthened C.B.S. Inequality for Systems of Linear Partial Differential Equations. Numerical Algorithms 32, 185–191 (2003). https://doi.org/10.1023/A:1024058625449
Issue Date:
DOI: https://doi.org/10.1023/A:1024058625449