Abstract
Let Abe a finite set of integers. Assuming that R⊆A×Ais “not too large”, we give a lower-bound estimate for the cardinality of the restricted sumset A+ R A:= {a1 + a2 : a1; a2 ∈A;(a1; a2) ∉R}in terms of the cardinality and the length of A.
Similar content being viewed by others
REFERENCES
N. Alon, M. B. Nathanson and I. Z. Ruzsa, Adding distinct congruence classes modulo a prime, American Math. Monthly 102 (1995), 250–255.
N. Alon, M. B. Nathanson and I. Z. Ruzsa, The polynomial method and restricted sums of congruence classes, J. Number Theory 56 (1996), 404–417.
J. A. Dias da Silva and Y. O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994), 140–146.
P. ErdŐs and R. L. Graham, Old and new problems and results in combinatorial number theory, L'Enseignement Mathématique, Geneva, 1980.
G. Freiman, On addition of finite sets, I, Izv. Vyssh. Uchebn. Zaved. Mat. 6(13) (1959), 202–213.
M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459–484.
M. Kneser, Ein Satz über abelschen Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math. Z. 61 (1955), 429–434.
V. F. Lev, Restricted set addition in groups. I. The classical setting, Journal of the London Math. Society, to appear.
V. F. Lev, Restricted set addition in groups. II. A generalization of the Erdős-Heilbronn conjecture, Submitted.
V. F. Lev and P. Y. Smeliansky, On addition of two distinct sets of integers, Acta Arithmetica 70(1) (1995), 85–91.
T. Schoen, The cardinality of restricted sumsets, Submitted.
I. Stanchescu, On addition of two distinct sets of integers, Acta Arithmetica 75(2) (1996), 191–194.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lev, V.F. Restricted set addition in groups, III. Integer sumsets with generic restrictions. Periodica Mathematica Hungarica 42, 89–98 (2001). https://doi.org/10.1023/A:1015248607819
Issue Date:
DOI: https://doi.org/10.1023/A:1015248607819