Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Restricted set addition in groups, III. Integer sumsets with generic restrictions

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let Abe a finite set of integers. Assuming that R⊆A×Ais “not too large”, we give a lower-bound estimate for the cardinality of the restricted sumset A+ R A:= {a1 + a2 : a1; a2 ∈A;(a1; a2) ∉R}in terms of the cardinality and the length of A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Alon, M. B. Nathanson and I. Z. Ruzsa, Adding distinct congruence classes modulo a prime, American Math. Monthly 102 (1995), 250–255.

    Google Scholar 

  2. N. Alon, M. B. Nathanson and I. Z. Ruzsa, The polynomial method and restricted sums of congruence classes, J. Number Theory 56 (1996), 404–417.

    Google Scholar 

  3. J. A. Dias da Silva and Y. O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994), 140–146.

    Google Scholar 

  4. P. ErdŐs and R. L. Graham, Old and new problems and results in combinatorial number theory, L'Enseignement Mathématique, Geneva, 1980.

    Google Scholar 

  5. G. Freiman, On addition of finite sets, I, Izv. Vyssh. Uchebn. Zaved. Mat. 6(13) (1959), 202–213.

    Google Scholar 

  6. M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459–484.

    Google Scholar 

  7. M. Kneser, Ein Satz über abelschen Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math. Z. 61 (1955), 429–434.

    Google Scholar 

  8. V. F. Lev, Restricted set addition in groups. I. The classical setting, Journal of the London Math. Society, to appear.

  9. V. F. Lev, Restricted set addition in groups. II. A generalization of the Erdős-Heilbronn conjecture, Submitted.

  10. V. F. Lev and P. Y. Smeliansky, On addition of two distinct sets of integers, Acta Arithmetica 70(1) (1995), 85–91.

    Google Scholar 

  11. T. Schoen, The cardinality of restricted sumsets, Submitted.

  12. I. Stanchescu, On addition of two distinct sets of integers, Acta Arithmetica 75(2) (1996), 191–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lev, V.F. Restricted set addition in groups, III. Integer sumsets with generic restrictions. Periodica Mathematica Hungarica 42, 89–98 (2001). https://doi.org/10.1023/A:1015248607819

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015248607819

Keywords