Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Economic models and the relevance of “chaotic regions”:An application to Goodwin's growth cycle model

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we argue that Pohjola's one‐dimensional, discrete‐time version of Goodwin'sgrowth cycle model is based on assumptions that conflict with the “symbiotic‐conflictual”spirit of the model. It is shown that when the assumption about the dynamical real wage ismodified, in contrast with Pohjola's opinion, the likelihood of chaotic solutions does notincrease. In particular, when a discrete‐time Phillips curve is considered, the model becomestwo‐dimensional, but admits chaotic solutions only for parameter values which are not withineconomically reasonable values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.T. Alliwood, T.D. Sauer and J.A. Yorke, Chaos. An Introduction to Dynamical Systems, Springer, 1997.

  2. C. Azariadis, Intertemporal Macroeconomics, Blackwell, 1993.

  3. J.R. Beddington, C.A. Free and J.H. Lawton, Dynamic complexity in predator-prey models framed in difference equations, Nature 255(1975)58-60.

    Google Scholar 

  4. J. Benhabib and R.H. Day, Erratic accumulation, Economic Letters 6(1980)113-117.

    Google Scholar 

  5. J. Benhabib and R.H. Day, Rational choice and erratic behaviour, Review of Economic Studies 48(1981)459-471.

    Google Scholar 

  6. J.M. Blatt, Dynamic Economic Systems: A Post-Keynesian Approach, Sharpe, 1983.

  7. W.A. Brock and W.D. Dechert, Non-linear dynamical systems: instability and chaos in economics, in: Handbook of Mathematical Economics, eds. W. Hildenbrand and H. Sonnenschein, Elsevier Science, 1991, pp. 2209-2235.

  8. D. Delli Gatti, M. Gallegati and L. Gardini, Investment confidence, corporate debt and income fluctuations, Journal of Economic Behavior and Organization 22(1993)161-187.

    Google Scholar 

  9. J.-P. Fitoussi and K. Velupillai, Growth and cycles in distributive shares, output and employment, in: Macro-Dinamique et Déséquilibres, eds. J.-P. Fitoussi and P.-A. Muet, Ed. Economica, 1987, pp. 31-55.

  10. G. Gandolfo, Economic Dynamics, 3rd ed., Springer, 1996.

  11. R.M. Goodwin, The nonlinear accelerator and the persistence of business cycles, Econometrica 19(1951)1-17.

    Google Scholar 

  12. R.M. Goodwin, A growth cycle, in: Socialism, Capitalism and Economic Growth, ed. C.H. Feinstein, Cambridge University Press, 1967, pp. 54-58.

  13. R.M. Goodwin, M. Krüger and A. Vercelli (eds.), Nonlinear Models of Fluctuating Growth, Springer, 1984.

  14. R.C. Hilborn, Chaos and Nonlinear Dynamics. An Introduction for Scientists and Engineers, Oxford University Press, 1994.

  15. D. Holton and R.M. May, Models of chaos from natural selection, in: The Nature of Chaos, ed. T. Mullin, Clarendon Press, 1993, pp. 120-148.

  16. H.A. Lauwerier, Two-dimensional iterative maps, in: Chaos, ed. A.V. Holden, Manchester University Press, 1987.

  17. F.R. Marotto, Snap-back repellers imply chaos in R n, Journal of Mathematical Analysis and Applications 72(1978)199-223.

    Google Scholar 

  18. R.M. May, Biological populations with nonoverlapping generations: Stable point, stable cycles, and chaos, Science 186(1974)645-647.

    Google Scholar 

  19. R.M. May, Simple mathematical models with very complicated dynamics, Nature 261(1976)459-467.

    Google Scholar 

  20. A. Medio, Teoria Nonlineare del Ciclo Economico, Il Mulino, 1979.

  21. M.J. Pohjola, Stable and chaotic growth: The dynamics of a discrete version of Goodwin's growth cycle model, Zeitschrift für Nationalökonomie 41(1981)27-38.

    Google Scholar 

  22. S. Sordi, Chaos in macrodynamics: An excursion through the literature, Quaderni del Dipartimento di Economia Politica no. 195, Università di Siena, Siena, 1996.

    Google Scholar 

  23. M.J. Stutzer, Chaotic dynamics and bifurcation in a macro-model, Journal of Economic Dynamics and Control 2(1980)377-393.

    Google Scholar 

  24. J.M.T. Thompson and H.B. Stewart, Nonlinear Dynamics and Chaos. Geometrical Methods for Engineers and Scientists, Wiley, 1986.

  25. K. Velupillai, Linear and nonlinear dynamics in economics: The contributions of Richard Goodwin, Economic Notes no. 3(1982)73-92.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sordi, S. Economic models and the relevance of “chaotic regions”:An application to Goodwin's growth cycle model. Annals of Operations Research 89, 3–19 (1999). https://doi.org/10.1023/A:1018987909832

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018987909832

Keywords