Abstract
The relationships between arithmetical simulation of random processes, ergodic theory, and optimization are analyzed. Some new results are considered and their possible applications to optimization problems are described.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
A. G. Postnikov, Arithmetical Simulation of Random Processes [in Russian], Nauka, Moscow (1960).
I. V. Sergienko and N. Z. Shor, “Academician V. S. Mikhalevich as a scientist and science organizer,” Kibern. Sist. Analiz, No. 1, 77–100 (2000).
A. G. Postnikov and I. I. Pyatetskii–Shapio, “Bernoulli-normal sequences of signs,” Izv. AN SSSR, Ser. Mat., 21, 501–514 (1957).
L. P. Postnikova, Geometry of Numbers and Diophantine Approximations [in Russian], Inst. Fiz. Mat. AN LSSR, Vilnius (1974).
Ð. Weyl, “On a uniform distribution of numbers modulo one,” in: Selected papers [Russian translation], Nauka, Moscow (1984), pp. 58–93.
E. Borel, Lecon sur la theorie des functions, IHES, Paris (1914).
H. Lebesgue, “Sur certaines demonstrations d'existence,” Bull. Soc. Math. France, 45, 132–144 (1917).
H. Steinhaus, “Uber einige prinzipiielle Fragen der mathematischen Statistik,” in: Ber. Tagung Wahr. und Math. Statistik, Springer, Berlin (1956), pp. 211–134.
W. Sierpinski, “Demonstration elementaire du theoreme de E. Borel,” Bull. Soc. Math. France, 45, 127–132 (1917).
G. Polya and G. Sege, Problems and Theorems from Analysis. I [Russian translation], Nauka, Moscow (1978).
I. Venn, The Logic of Chance, King College, London (1888).
R. Mises, Probability and Statistics [in Russian], GIZ, Moscow (1930).
A. Church, “On the concept of random sequence,” Bull. Amer. Math. Soc., 46, 130–135 (1940).
N. M. Korobov, “On some problems of uniform distribution,” Izv. AN SSSR, Ser. Mat., 14, 215–231 (1950).
A. N. Kolmogorov, “Logical fundamentals of information and probability theories,” Probl. Peredachi Inform., 5, Issue 3, 3–11 (1969).
D. G. Champernowne, “The construction of the decimals normal in the scale of ten,” J. London Math. Soc., 8, 254–260 (1933).
O. A. Gelfond and Yu. V. Linnik, Elementary Methods in the Analytical Theory of Numbers [in Russian], Fiz. Mat. GIZ, Moscow (1962).
D. L. Doob, Probability Processes [Russian translation], Mir, Moscow (1956).
A. G. Postnikov, “Solving a system of finite-difference equations for the Dirichlet problem using a normal sequence of signs,” Dokl. AN SSSR, 123, No. 3, 407–409 (1958).
A. H. Copeland and P. Erdos, “Note on normal numbers,” Bull. Amer. Math. Soc., 45, 857-860 (1946).
H. Davenport and P. Erdos, “Note on normal decimals,” Can. J. Math., 4, 58–63 (1952).
I. I. Pyatetskii-Shapiro, “Laws of distribution of fractional parts of exponential functions,” Izv. AN SSSR, Ser. Mat., 15, 47–52 (1951).
Yu. M. Ermolyev and N. Z. Shor, “The method of random search for two-stage stochastic problems and its generalizations,” Kibernetika, No. 1, 90–92 (1968).
Yu. M. Ermolyev, Methods of Stochastic Programming [in Russian], Nauka, Moscow (1976).
L. P. Postnikova, “The quantitative form of the Borel problem,” Acta Arithmetica, 21, 235–250 (1972).
A. N. Kolmogorov, Main Concepts of Probability Theory [in Russian], Nauka, Moscow (1974).
A. G. Postnikov, An Introduction to the Analytical Theory of Number [in Russian], Nauka, Moscow (1974).
G. Cramer and M. Litbetter, Stationary Random Processes [Russian translation], Mir, Moscow (1967).
P. R. Halmos, Measure Theory, Van Nostrand, Princeton, New Jersey (1950).
I. P. Kornfeld, Ya. G. Sinai, and S. V. Fomin, The Ergodic Theory [in Russian], Nauka, Moscow (1980).
I. I. Gikhman, “To the problem on the number of intersections of the boundary of a given domain by a random function,” in: Trans. Conf. on the Probability Theory and Math. Statistics [in Russian], (1958), pp. 247–262.
I. N. Kovalenko, “On a limiting theorem for determinants in the class of Boolean functions,” DAN SSSR, 161, No. 3, 517–519 (1965).
I. N. Kovalenko and A. A. Levitskaya, “The asymptotic behavior of the number of solutions of the system of random linear equations over a finite field and a finite ring,” DAN SSSR, 221, No. 4, 778–781 (1975).
I. N. Kovalenko, A. A. Levitskaya, and M. N. Savchuk, Selected Problems of the Probability Theory of Combinations [in Russian], Naukova Dumka, Kiev (1986).
K. de Leeuw, E. F. Moore, C. E. Shannon, and H. Shapiro, “Computability by probabilistic machines,” in: C. E. Shannon and J. McCarthy (eds.), Automata Studies, Princeton Univ. Press, Princeton, NJ (1955), pp. 183–212.
H. S. Shapiro, “Extremal problems for polynomials and power series,” Sc. M. Theses, Massachusetts Inst. of Technology (1951).
J. H. Loxton and A. J. van der Poorten, “Arithmetic properties of automata: regular sequences,” J. Reine Angew. Math., 392, 57–69 (1988).
J. S. Byrnes, “On polynomials with coefficients of modulus one,” Bull. London Math. Soc., 9, 171–176 (1977).
T. W. Korner, “On a polynomial of J. S. Byrnes,” Bull. London Math. Soc., 2, 219–224 (1980).
J. S. Byrnes and H. S. Shapiro, “Shapiro sequences, Reed-Muller codes, and functional equations,” http://www.prometheus-inc.com/public/pons/RM.pdf.
N. M. Glazunov, “On validated numerics, category theory and computer algebra framework for simulation and computation in theoretical physics,” Nuclear Instruments and Methods in Physics Research, Section A, 502, No. 2–3, 654–656 (2003).
L. Bartholdi, R. Grigorchuk, and V. Nekrashevych, “From fractal groups to fractal sets,” in: P. Grabner and W. Woess (eds.), Fractals in Graz 2001, Birkhauser, Basel (2003), pp. 25–118.
N. M. Glazunov, “About moduli spaces, equidistribution, estimates, and rational points of algebraic curves,” Ukr. Mat. Zh., 53, No. 9, 1174–1183 (2001).
N. Z. Shor, Nondifferentiable Optimization and Polynomial Problems, Kluwer Academ. Publ., Boston (1998).
R. Kannan, “Rapid mixing in Markov chains,” ICM2002, 3, 674–683 (2003).
P. S. Knopov, Optimal Estimates of Stochastic Systems Parameters [in Russian], Naukova Dumka, Kiev (1981).
C. Deninger, “Some analogies between number theory and dynamical systems on foliated spaces,” Doc. Math. J. DMV Extra, 163–186 (1999).
P. D'Ambros, G. Everest, R. Miles, and T. Ward, “Dynamical systems arising from elliptic curves,” Colloq. Math., 84 85, Pt. 1, 95–107 (2000).
N. M. Glazunov, “Critical lattices, elliptic curves and their possible dynamics,” in: Proc. Voronoi Conf. on Analytic Number Theory and Spatial Tessellation, Kyiv, Sept. 22–28, 2003, Inst. of Math. (2003), p. 29.
H. Farkas and I. Kra, Riemann Surfaces, Springer-Verlag, Berlin (1980).
H. Zieschang and E. Fogt, Surfaces and Discontinuous Groups [Russian translation], Nauka, Moscow (1987).
L. Bers, “Finite dimensional Teichmuller spaces and generalizations,” Bulletin AMS, 5, No. 2, 131–172 (1981).
N. M. Glazunov, “Category aspects of complex manifolds and problems of mirror symmetry,” Probl. Program., No. 3–4, 104–110 (2002).
W. M. Goldman, “Ergodic theory on moduli space,” Annals of Math., 146, 475–507 (1997).
D. Pickrell and E. Xia, “Mapping class group actions on representation varieties, I. Ergodicity,” Prepr. University of Arizona (1998).
M. Shiffer, “Extreme problems and variational methods in a conformal mapping,” in: International Mathematical Congress in Edinburgh [in Russian], Fiz.-Mat. GIZ, Moscow (1962), pp. 192–218.
F. Gering, “Some problems of the theory of quasiconformal mappings,” in: International Congress of Mathematicians in Berkeley [in Russian], Mir, Moscow (1991), pp. 114–138.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Glazunov, N.M., Postnikova, L.P. & Shor, N.Z. Ergodic Theory and Arithmetical Simulation of Random Processes. Cybernetics and Systems Analysis 40, 527–536 (2004). https://doi.org/10.1023/B:CASA.0000047874.19986.96
Issue Date:
DOI: https://doi.org/10.1023/B:CASA.0000047874.19986.96