Abstract
We explore how a simple linear change of variable affects the inclusion functions obtained with Interval Analysis methods. Univariate and multivariate polynomial test functions are considered, showing that translation-based methods improve considerably the bounds computed by standard inclusion functions. An Interval Branch-and-Bound method for global optimization is then implemented to compare the different procedures, showing that, although with times higher than those given by Taylor forms, the number of clusters and iterations is strongly reduced.
Similar content being viewed by others
References
Baumann, E. (1988), Optimal centered form, BIT, 28, 80-87.
Du, K. and Kearfott, R.B. (1996), The cluster problem in multivariate global optimization, Journal of Global Optimization, 10, 27-32.
Hansen, E. (1992), Global Optimization Using Interval Analysis, Marcel Dekker, New York.
Hansen, P., Jaumard, B. and Lu, S.-H. (1989), Global minimization of univariate functions by sequential polynomial approximation international, International Journal of Computer Mathematics, 28, 183-193.
Ichida, K. and Fujii, Y. (1979), An interval arithmetic method for global optimization, Computing, 23, 85-97.
Kearfott, R.B. (1996), Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Dordrecht, Boston, London.
Messine, F. (1997), Méthodes d'optimisation globale basées sur l'analyse d'intervalle pour la résolution de problèmes avec contraintes, PhD Thesis, INPT-ENSEEIHT, Toulouse. Available on the website: www.univ-pau.fr/~messine
Moore, R.E. (1996), Interval Analysis, Prentice Hall, Englewood Cliffs, N.J.
Ratschek, H. and Rokne, J. (1984), Computer Methods for the Range of Functions, Ellis Horwood, Chichester, England.
Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global optimization, Ellis Horwood, Chichester, England.
Visweswaran, V. and Floudas, C.A. (1992), Unconstrained and constrained global optimization of polynomial functions in one variable, Journal of Global Optimization, 2(1), 73-100.
Wingo, D.R. (1985), Globally minimizing polynomials without evaluating derivatives international, Journal of Computer Mathematics, 17, 287-294.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Carrizosa, E., Hansen, P. & Messine, F. Improving Interval Analysis Bounds by Translations. Journal of Global Optimization 29, 157–172 (2004). https://doi.org/10.1023/B:JOGO.0000042114.11969.bb
Issue Date:
DOI: https://doi.org/10.1023/B:JOGO.0000042114.11969.bb