Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving Interval Analysis Bounds by Translations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We explore how a simple linear change of variable affects the inclusion functions obtained with Interval Analysis methods. Univariate and multivariate polynomial test functions are considered, showing that translation-based methods improve considerably the bounds computed by standard inclusion functions. An Interval Branch-and-Bound method for global optimization is then implemented to compare the different procedures, showing that, although with times higher than those given by Taylor forms, the number of clusters and iterations is strongly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumann, E. (1988), Optimal centered form, BIT, 28, 80-87.

    Google Scholar 

  2. Du, K. and Kearfott, R.B. (1996), The cluster problem in multivariate global optimization, Journal of Global Optimization, 10, 27-32.

    Google Scholar 

  3. Hansen, E. (1992), Global Optimization Using Interval Analysis, Marcel Dekker, New York.

    Google Scholar 

  4. Hansen, P., Jaumard, B. and Lu, S.-H. (1989), Global minimization of univariate functions by sequential polynomial approximation international, International Journal of Computer Mathematics, 28, 183-193.

    Google Scholar 

  5. Ichida, K. and Fujii, Y. (1979), An interval arithmetic method for global optimization, Computing, 23, 85-97.

    Google Scholar 

  6. Kearfott, R.B. (1996), Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Dordrecht, Boston, London.

    Google Scholar 

  7. Messine, F. (1997), Méthodes d'optimisation globale basées sur l'analyse d'intervalle pour la résolution de problèmes avec contraintes, PhD Thesis, INPT-ENSEEIHT, Toulouse. Available on the website: www.univ-pau.fr/~messine

  8. Moore, R.E. (1996), Interval Analysis, Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  9. Ratschek, H. and Rokne, J. (1984), Computer Methods for the Range of Functions, Ellis Horwood, Chichester, England.

    Google Scholar 

  10. Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global optimization, Ellis Horwood, Chichester, England.

    Google Scholar 

  11. Visweswaran, V. and Floudas, C.A. (1992), Unconstrained and constrained global optimization of polynomial functions in one variable, Journal of Global Optimization, 2(1), 73-100.

    Google Scholar 

  12. Wingo, D.R. (1985), Globally minimizing polynomials without evaluating derivatives international, Journal of Computer Mathematics, 17, 287-294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrizosa, E., Hansen, P. & Messine, F. Improving Interval Analysis Bounds by Translations. Journal of Global Optimization 29, 157–172 (2004). https://doi.org/10.1023/B:JOGO.0000042114.11969.bb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOGO.0000042114.11969.bb