Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Interval Arithmetic, Affine Arithmetic, Taylor Series Methods: Why, What Next?

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In interval computations, the range of each intermediate result r is described by an interval r. To decrease excess interval width, we can keep some information on how r depends on the input x=(x 1,...,x n ). There are several successful methods of approximating this dependence; in these methods, the dependence is approximated by linear functions (affine arithmetic) or by general polynomials (Taylor series methods). Why linear functions and polynomials? What other classes can we try? These questions are answered in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Berz and G. Hoffstätter, Computation and application of Taylor polynomials with interval remainder bounds, Reliable Comput. 4 (1998) 83–97.

    Google Scholar 

  2. M. Berz and K. Makino, Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models, Reliable Comput. 4 (1998) 361–369.

    Google Scholar 

  3. M. Berz, K. Makino and J. Hoefkens, Verified integration of dynamics in the solar system, Nonlinear Anal. 47 (2001) 179–190.

    Google Scholar 

  4. V.A. Brumberg, Analytical Techniques of Celestial Mechanics (Springer, Berlin, 1995).

    Google Scholar 

  5. L.H. de Figueiredo and J. Stolfi, Self-Validated Numerical Methods and Applications (IMPA, Rio de Janeiro, 1997).

    Google Scholar 

  6. J. Garloff and A.P. Smith, Solution of systems of polynomial equations by using Bernstein polynomials, in: Symbolic Algebraic Methods and Verification MethodsTheory and Application, eds. G. Alefeld, J. Rohn, S. Rump and T. Yamamoto (Springer, Vienna, 2001) pp. 87–97.

    Google Scholar 

  7. E.R. Hansen, A generalized interval arithmetic, in: Interval Mathematics, ed. K. Nickel, Lecture Notes in Computer Science, Vol. 29 (Springer, New York, 1975) pp. 7–18.

    Google Scholar 

  8. J. Hoefkens and M. Berz, Verification of invertibility of complicated functions over large domains, Reliable Comput. 8(1) (2002) 1–16.

    Google Scholar 

  9. L. Jaulin, M. Kieffer, O. Didrit and E. Walter, Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics (Springer, London, 2001).

    Google Scholar 

  10. R.B. Kearfott, Rigorous Global Search: Continuous Problems (Kluwer, Dordrecht, 1996).

    Google Scholar 

  11. R.B. Kearfott and V. Kreinovich, eds., Applications of Interval Computations (Kluwer, Dordrecht, 1996).

    Google Scholar 

  12. R.B. Kearfott and V. Kreinovich, Where to bisect a box? A theoretical explanation of the experimental results, in: Proc. of MEXICON'98, Workshop on Interval Computations, 4th World Congress on Expert Systems, eds. G. Alefeld and R.A. Trejo, Mexico City, Mexico, 1998.

  13. K. Knopp, Theory of Functions (Dover, New York, 1996).

    Google Scholar 

  14. V. Kreinovich, Interval rational = algebraic, ACM SIGNUM Newsletter 30(4) (1995) 2–13.

    Google Scholar 

  15. V. Kreinovich and T. Csendes, Theoretical justification of a heuristic subbox selection criterion, Central European J. Oper. Res. 9(3) (2001) 255–265.

    Google Scholar 

  16. V. Kreinovich and A. Lakeyev, ‘Interval rational = algebraic’ revisited: A more computer realistic result, ACM SIGNUM Newsletter 31(1) (1996) 14–17.

    Google Scholar 

  17. V. Kreinovich, G. Mayer and S. Starks, On a theoretical justification of the choice of epsilon-inflation in PASCAL-XSC, Reliable Comput. 3(4) (1997) 437–452.

    Google Scholar 

  18. V. Kreinovich and J. Wolff von Gudenberg, An optimality criterion for arithmetic of complex sets, Geombinatorics 10(1) (2000) 31–37.

    Google Scholar 

  19. R. Lohner, Einschliessung der Lösung gewöhnlicher Anfangs-und Randwertaufgaben und Anwendungen, Ph.D. thesis, Universität Karlsruhe, Karlsruhe, Germany (1988).

    Google Scholar 

  20. R.E. Moore, Methods and Applications of Interval Analysis (SIAM, Philadelphia, PA, 1979).

    Google Scholar 

  21. N.S. Nedialkov and K.R. Jackson, An interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation, Reliable Comput. 5(3) (1999) 289–310.

    Google Scholar 

  22. N.S. Nedialkov, K.R. Jackson and J.D. Pryce, An effective high-order interval method for validating existence and uniqueness of the solution of an IVP for an ODE, Reliable Comput. 7(6) (2001) 449–465.

    Google Scholar 

  23. M. Neher, Geometric series bounds for the local errors of Taylor methods for linear nth order ODEs, in: Symbolic Algebraic Methods and Verification MethodsTheory and Application, eds. G. Alefeld, J. Rohn, S. Rump and T. Yamamoto (Springer, Vienna, 2001) pp. 183–193.

    Google Scholar 

  24. H.T. Nguyen and V. Kreinovich, Applications of Continuous Mathematics to Computer Science (Kluwer, Dordrecht, 1997).

    Google Scholar 

  25. J. Tupper, Reliable two-dimensional graphing methods for mathematical formulae with two free variables, in: SIGGRAPH 2001 Conf. Proc., August 2001, pp. 77–86.

  26. J. Wolff von Gudenberg and V. Kreinovich, Candidate sets for complex interval arithmetic, in: Trends in Information Technology, Proc. of Internat. Conf. on Information Technology ICIT'99, eds. H. Mohanty and C. Baral, Bhubaneswar, India, 20–22 December 1999 (Tata/McGraw-Hill, New Delhi, 2000) pp. 230–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedialkov, N.S., Kreinovich, V. & Starks, S.A. Interval Arithmetic, Affine Arithmetic, Taylor Series Methods: Why, What Next?. Numerical Algorithms 37, 325–336 (2004). https://doi.org/10.1023/B:NUMA.0000049478.42605.cf

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NUMA.0000049478.42605.cf