Abstract
The effects of climate change on biodiversity are increasingly well documented, and many methods have been developed to assess species' vulnerability to climatic changes, both ongoing and projected in the coming decades. To minimize global biodiversity losses, conservationists need to identify those species that are likely to be most vulnerable to the impacts of climate change. In this Review, we summarize different currencies used for assessing species' climate change vulnerability. We describe three main approaches used to derive these currencies (correlative, mechanistic and trait-based), and their associated data requirements, spatial and temporal scales of application and modelling methods. We identify strengths and weaknesses of the approaches and highlight the sources of uncertainty inherent in each method that limit projection reliability. Finally, we provide guidance for conservation practitioners in selecting the most appropriate approach(es) for their planning needs and highlight priority areas for further assessments.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
IPCC Summary for Policymakers in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145â148 (2004).
Mantyka-Pringle, C. S., Martin, T. G. & Rhodes, J. R. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob. Change Biol. 18, 1239â1252 (2012).
Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894â849 (2010).
Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nature Clim. Change. 1, 401â406 (2011).
Réale, D., McAdam, A. G., Boutin, S. & Berteaux, D. Genetic and plastic responses of a northern mammal to climate change. Proc. Biol. Sci. 270, 591â596 (2003).
Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221â2229 (2014).
Auer, S. K. & King, D. I. Ecological and life-history traits explain recent boundary shifts in elevation and latitude of western North American songbirds. Glob. Ecol. Biogeogr. 23, 867â875 (2014).
Chevin, L-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).
Midgley, G. F. et al. BioMove â An integrated platform simulating the dynamic response of species to environmental change. Ecography. 33, 612â616 (2010).
Chessman, B. C. Identifying species at risk from climate change: Traits predict the drought vulnerability of freshwater fishes. Biol. Conserv. 160, 40â49 (2013).
Oppenheimer, M. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 19 (IPCC, Cambridge Univ. Press, 2014).
Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, 2621â6 (2008).
Foden, W. B. et al. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8, e65427 (2013).
Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53â8 (2011).
Barbet-Massin, M., Thuiller, W. & Jiguet, F. The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob. Change Biol. 18, 881â890 (2012).
Hughes, A. C., Satasook, C., Bates, P. J. J., Bumrungsri, S. & Jones, G. The projected effects of climatic and vegetation changes on the distribution and diversity of Southeast Asian bats. Glob. Change Biol. 18, 1854â1865 (2012).
Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606â8611 (2012).
Ameca y Juárez, E. I., Mace, G. M., Cowlishaw, G., Cornforth, W. A. & Pettorelli, N. Assessing exposure to extreme climatic events for terrestrial mammals. Conserv. Lett. 6, 145â153 (2013).
Laidre, K. L. et al. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18, S97â125 (2008).
Garnett, S. et al. Climate Change Adaptation Strategies for Australian Birds (National Climate Change Adaptation Research Facility, 2013).
Yu, D. et al. Global climate change will severely decrease potential distribution of the East Asian coldwater fish Rhynchocypris oxycephalus (Actinopterygii, Cyprinidae). Hydrobiologia 700, 23â32 (2013).
Buckley, L. B. The range implications of lizard traits in changing environments. Glob. Ecol. Biogeogr. 19, 452â464 (2010).
Iverson, L. R., Prasad, A. M., Matthews, S. N. & Peters, M. P. Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change. Ecosystems 14, 1005â1020 (2011).
Crossman, N. D., Bryan, B. A. & Summers, D. M. Identifying priority areas for reducing species vulnerability to climate change. Divers. Distrib. 18, 60â72 (2012).
Visconti, P. et al. Future hotspots of terrestrial mammal loss. Phil. Trans. R. Soc. London B 366, 2693â2702 (2011).
Vieilledent, G., Cornu, C., Cunà Sanchez, A., Leong Pock-Tsy, J-M. & Danthu, P. Vulnerability of baobab species to climate change and effectiveness of the protected area network in Madagascar: Towards new conservation priorities. Biol. Conserv. 166, 11â22 (2013).
Songer, M., Delion, M., Biggs, A. & Huang, Q. Modeling impacts of climate change on giant panda habitat. Int. J. Ecol. 2012, 1â12 (2012).
Pearson, R. G. et al. Model-based uncertainty in species range prediction. J. Biogeogr. 33, 1704â1711 (2006).
Carvalho, S. B., Brito, J. C., Crespo, E. G., Watts, M. E. & Possingham, H. P. Conservation planning under climate change: Toward accounting for uncertainty in predicted species distributions to increase confidence in conservation investments in space and time. Biol. Conserv. 144, 2020â2030 (2011).
Tuanmu, M-N. et al. Climate-change impacts on understorey bamboo species and giant pandas in China's Qinling Mountains. Nature Clim. Change. 3, 249â253 (2012).
Keith, D. A. et al. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol. Lett. 4, 560â563 (2008).
Fordham, D. A., Akçakaya, H. R., Araújo, M. B., Keith, D. A. & Brook, B. W. Tools for integrating range change, extinction risk and climate change information into conservation management. Ecography 36, 956â964 (2013).
Guidelines for Using the IUCN Red List Categories and Criteria Version 10 (IUCN Standards and Petitions Subcommittee, 2013); http://www.iucnredlist.org/documents/RedListGuidelines.pdf.
Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. Biol. Sci. 277, 1259â1266 (2010).
Gregory, R. D. et al. An indicator of the impact of climatic change on European bird populations. PLoS One 4, e4678 (2009).
Huntley, B., Altwegg, R., Barnard, P., Collingham, Y. C. & Hole, D. G. Modelling relationships between species spatial abundance patterns and climate. Glob. Ecol. Biogeogr. 21, 668â681 (2012).
Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. http://dx.doi.org/10.1111/conl.12159 (2015).
Hunter, C. M. et al. Climate change threatens polar bear populations: a stochastic demographic analysis. Ecology 91, 2883â2897 (2010).
Anderson, B. J. et al. Dynamics of range margins for metapopulations under climate change. Proc. Biol. Sci. 276, 1415â1420 (2009).
Jenouvrier, S. et al. Demographic models and IPCC climate projections predict the decline of an emperor penguin population. Proc. Natl Acad. Sci. USA 106, 1844â1847 (2009).
Carroll, C. Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: marten and lynx in the northern Appalachians. Conserv. Biol. 21, 1092â1104 (2007).
Maschinski, J., Baggs, J. E., Quintana-Ascencio, P. F. & Menges, E. S. Using population viability analysis to predict the effects of climate change on the extinction risk of an endangered limestone endemic shrub, Arizona cliffrose. Conserv. Biol. 20, 218â228 (2006).
Thompson, L. C. et al. Water management adaptations to prevent loss of spring-run chinook salmon in california under climate change. J. Wat. Resour. Plan. Manag. 138, 465â478 (2012).
Fordham, D. A. et al. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nature Clim. Change 3, 899â903 (2013).
Vedder, O., Bouwhuis, S. & Sheldon, B. C. Quantitative assessment of the importance of phenotypic plasticity in adaptation to climate change in wild bird populations. PLoS Biol. 11, e1001605 (2013).
Young, B. E. et al. in Wildlife Conservation in a Changing Climate (eds. Brodie, J., Post, E. & Doak, D.) 129â150 (Univ. Chicago Press, 2012).
Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361â371 (2003).
Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993â1009 (2005).
Lawler, J. J., Shafer, S. L., Bancroft, B. A. & Blaustein, A. R. Projected climate impacts for the amphibians of the Western hemisphere. Conserv. Biol. 24, 38â50 (2009).
Howard, C., Stephens, P. A., Pearce-Higgins, J. W., Gregory, R. D. & Willis, S. G. Improving species distribution models: the value of data on abundance. Methods Ecol. Evol. 5, 506â513 (2014).
Garcia, R. A., Burgess, N. D., Cabeza, M., Rahbek, C. & Araújo, M. B. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Glob. Change Biol. 18, 1253â1269 (2012).
Watson, J. E. M., Iwamura, T. & Butt, N. Mapping vulnerability and conservation adaptation strategies under climate change. Nature Clim. Change 3, 989â994 (2013).
Hole, D. G. et al. Toward a management framework for networks of protected areas in the face of climate change. Conserv. Biol. 25, 305â315 (2011).
Jeschke, J. M. & Strayer, D. L. Usefulness of bioclimatic models for studying climate change and invasive species. Ann. NY Acad. Sci. 1134, 1â24 (2008).
Harrison, P. A., Berry, P. M., Butt, N. & New, M. Modelling climate change impacts on species' distributions at the European scale: implications for conservation policy. Environ. Sci. Policy 9, 116â128 (2006).
Sánchez-Fernández, D., Lobo, J. M. & Hernández-Manrique, O. L. Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles. Divers. Distrib. 17, 163â171 (2011).
Cole, K. L. et al. Past and ongoing shifts in Joshua tree distribution support future modeled range contraction. Ecol. Appl. 21, 137â49 (2011).
Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA 106 (Suppl), 19729â19736 (2009).
Bagchi, R. et al. Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty. Glob. Change Biol. 19, 1236â48 (2013).
Heikkinen, R. K. et al. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 30, 751â777 (2006).
Guisan, A. & Rahbek, C. SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J. Biogeogr. 38, 1433â1444 (2011).
Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209â212 (2012).
Dubuis, A. et al. Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Divers. Distrib. 17, 1122â1131 (2011).
Tyre, A. J., Possingham, H. P. & Lindenmayer, D. B. Inferring process from pattern: can territory occupancy provide information about life history parameters? Ecol. Appl. 11, 1722â1737 (2001).
Boitani, L. et al. What spatial data do we need to develop global mammal conservation strategies? Phil. Trans. R. Soc. Lond. B 366, 2623â2632 (2011).
Peterson, A. T. & MartÃnez-Meyer, E. Geographic evaluation of conservation status of African forest squirrels (Sciuridae) considering land use change and climate change: the importance of point data. Biodivers. Conserv. 16, 3939â3950 (2007).
Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668â6672 (2008).
Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82, 275â285 (2013).
Best, A. S., Johst, K., Münkemüller, T. & Travis, M. J. Which species will succesfully track climate change? The influence of intraspecific competition and density dependent dispersal on range shifting dynamics. Oikos 116, 1531â1539 (2007).
Amstrup, S. C., Marcot, B. G. & Douglas, D. C. Forecasting the Range Wide Status of Polar Bears at Selected Times in the 21st Century (US Department of the Interior, US Geological Survey, 2007).
Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Phil. Trans. R. Soc. Lond. B 367, 1665â1679 (2012).
Wilson, R. J., Davies, Z. G. & Thomas, C. D. Modelling the effect of habitat fragmentation on range expansion in a butterfly. Proc. Biol. Sci. 276, 1421â1427 (2009).
Morin, X. & Thuiller, W. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90, 1301â1313 (2009).
Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol. Lett. 12, 334â350 (2009).
Monahan, W. B. A mechanistic niche model for measuring species' distributional responses to seasonal temperature gradients. PLoS One 4, e7921 (2009).
Young, B., Byers, E., Gravuer, K., Hall, K., Hammerson, G. & Redder, A. Guidelines for Using the NatureServe Climate Change Vulnerability Index (NatureServe, 2010).
Gardali, T., Seavy, N. E., DiGaudio, R. T. & Comrack, L. A. A climate change vulnerability assessment of California's at-risk birds. PLoS One 7, e29507 (2012).
Rowland, E. L., Davison, J. E. & Graumlich, L. J. Approaches to evaluating climate change impacts on species: a guide to initiating the adaptation planning process. Environ. Manage. 47, 322â337 (2011).
Moyle, P. B., Kiernan, J. D., Crain, P. K. & Quiñones, R. M. Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach. PLoS One 8, e63883 (2013).
Pacifici, M. et al. Generation length for mammals. Nature Conserv. 5, 89â94 (2013).
Lankford, A. J., Svancara, L. K., Lawler, J. J. & Vierling, K. Comparison of climate change vulnerability assessments for wildlife. Wildlife Soc. Bull. 38, 386â394 (2014).
Thomas, C. D. et al. A framework for assessing threats and benefits to species responding to climate change. Methods Ecol. Evol. 2, 125â142 (2011).
Santini, L. et al. Ecological correlates of dispersal distance in terrestrial mammals. Hystrix 24, 1â6 (2013).
Maclean, I. M. D. & Wilson, R. J. Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl Acad. Sci. USA 108, 12337â12342 (2011).
Red List Categories and Criteria Version 3.1 (IUCN Species Survival Commission, 2001).
Akçakaya, H. R., Butchart, S. H. M., Mace, G. M., Stuart, S. N. & Hilton-Taylor, C. Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Glob. Change Biol. 12, 2037â2043 (2006).
Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nature Clim. Change. 4, 217â221 (2014).
Summers, D. M., Bryan, B. A., Crossman, N. D. & Meyer, W. S. Species vulnerability to climate change: impacts on spatial conservation priorities and species representation. Glob. Change. Biol. 18, 2335â2348 (2012).
Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Phil. Trans. R. Soc. Lond. B 366, 2633â2641 (2011).
Wintle, B. A. et al. Ecologicalâeconomic optimization of biodiversity conservation under climate change. Nature Clim. Change. 1, 355â359 (2011).
Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl Acad. Sci. USA 102, 8245â8250 (2005).
Levinsky, I., Skov, F., Svenning, J-C. & Rahbek, C. Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodivers. Conserv. 16, 3803â3816 (2007).
Poiani, K. A., Goldman, R. L., Hobson, J., Hoekstra, J. M. & Nelson, K. S. Redesigning biodiversity conservation projects for climate change: examples from the field. Biodivers. Conserv. 20, 185â201 (2011).
Game, E. T., Kareiva, P. & Possingham, H. P. Six common mistakes in conservation priority setting. Conserv. Biol. 27, 480â485 (2013).
Bottrill, M. C. et al. Is conservation triage just smart decision making? Trends Ecol. Evol. 23, 649â654 (2008).
Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of speciesâclimate impact models under climate change. Glob. Change Biol. 11, 1â10 (2005).
Watling, J. I. et al. Validating predictions from climate envelope models. PLoS One 8, e63600 (2013).
Feeley, K. J. & Silman, M. R. Land-use and climate change effects on population size and extinction risk of Andean plants. Glob. Change Biol. 16, 3215â3222 (2010).
Watson, J. E. M. & Segan, D. B. Accommodating the human response for realistic adaptation planning: response to Gillson. et al. Trends Ecol. Evol. 28, 573â574 (2013).
RodrÃguez-Sánchez, F. & Arroyo, J. Reconstructing the demise of Tethyan plants: climate-driven range dynamics of Laurus since the Pliocene. Glob. Ecol. Biogeogr. 17, 685â695 (2008).
Lawler, J. J., White, D., Neilson, R. P. & Blaustein, A. R. Predicting climate-induced range shifts: model differences and model reliability. Glob. Change Biol. 12, 1568â1584 (2006).
Hole, D. G. et al. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 12, 420â431 (2009).
Guralnick, R. Differential effects of past climate warming on mountain and flatland species distributions: a multispecies North American mammal assessment. Glob. Ecol. Biogeogr. 16, 14â23 (2007).
Midgley, G. F., Hannah, L., Millar, D., Rutherford, M. C. & Powrie, L. W. Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob. Ecol. Biogeogr. 11, 445â451 (2002).
Waltari, E. et al. Locating pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS One 2, e563 (2007).
Johnston, K. M. J., Reund, K. A. F. & Schmitz, O. J. S. Projected range shifting by montane mammals under climate change: implications for Cascadia's National Parks. Ecosphere 3, 1â51 (2012).
Schwartz, M. W., Iverson, L. R., Prasad, A. M., Matthews, S. N. & O'Connor R. J. Predicting extinctions as a result of climate change. Ecology 87, 1611â1615 (2006).
Guisan, A. & Theurillat, J. Assessing alpine plant vulnerability to climate change: a modeling perspective. Integr. Assess. 1, 307â320 (2001).
Svenning, J., Normand, S. & Skov, F. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31, 316â326 (2008).
Molnár, P. K., Derocher, A. E., Thiemann, G. W. & Lewis, M. A. Predicting survival, reproduction and abundance of polar bears under climate change. Biol. Conserv. 143, 1612â1622 (2010).
Saltz, D., Rubenstein, D. I. & White, G. C. The impact of increased environmental stochasticity due to climate change on the dynamics of asiatic wild ass. Conserv. Biol. 20, 1402â1409 (2006).
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nature Clim. Change 2, 686â690 (2012).
Aiello-Lammens, M. E. et al. The impact of sea-level rise on Snowy Plovers in Florida: integrating geomorphological, habitat, and metapopulation models. Glob. Change Biol. 17, 3644â3654 (2011).
Beerling, D. J. Ecophysiological responses of woody plants to past CO2 concentrations. Tree Physiol. 16, 389â396 (1996).
Huntley, B. et al. Beyond bioclimatic envelopes: dynamic species' range and abundance modelling in the context of climatic change. Ecography 33, 621â626 (2010).
Kearney, M. et al. Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography (Cop.). 31, 423â434 (2008).
Blois, J. L. & Hadly, E. A. Mammalian response to Cenozoic cimatic change. Annu. Rev. Earth Planet. Sci. 37, 181â208 (2009).
Chin, A., Kyne, P. M., Walker, T. I. & McAuley, R. B. An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia's Great Barrier Reef. Glob. Change Biol. 16, 1936â1953 (2010).
Davison, J. E. et al. Bringing indices of species vulnerability to climate change into geographic space: an assessment across the Coronado national forest. Biodivers. Conserv. 21, 189â204 (2011).
Blois, J. L., McGuire, J. L. & Hadly, E. A. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771â774 (2010).
Finch, D. M., Friggens, M. M., Bagne, K. E., Coe, S. J. & Hawksworth, D. L. Vulnerability of Individual Species to Climate Change: Vertebrate Species of the Middle Rio Grande (US Department of Agriculture, 2010).
New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1â25 (2002).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965â1978 (2005).
SekercioÄlu, C. H., Daily, G. C. & Ehrlich, P. R. Ecosystem consequences of bird declines. Proc. Natl Acad. Sci. USA 101, 18042â18047 (2004).
Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).
Sodhi, N. S. et al. Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS One 3, e1636 (2008).
Martin, T. G. et al. Eliciting expert knowledge in conservation science. Conserv. Biol. 26, 29â38 (2012).
Flockhart, D. T. T., Pichancourt, J-B., Norris, D. R., Martin, T. G. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. J. Anim. Ecol. 84, 155â165 (2014).
Acknowledgements
This review was partially supported by the National Science Foundation under Grant No. (1136586).
Author information
Authors and Affiliations
Contributions
M.P., P.V., C.R., J.E.M.W. and W.B.F. designed the framework for the review. All authors contributed to the writing, discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Figures and tables (PDF 319 kb)
Rights and permissions
About this article
Cite this article
Pacifici, M., Foden, W., Visconti, P. et al. Assessing species vulnerability to climate change. Nature Clim Change 5, 215â224 (2015). https://doi.org/10.1038/nclimate2448
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nclimate2448
This article is cited by
-
Patterns of tropical forest understory temperatures
Nature Communications (2024)
-
How does climate change impact remote mountain communities? An empirical investigation in Gilgit-Baltistan
GeoJournal (2024)
-
Spatio-temporal dynamics of phytoplankton diversity and community structure in relation to environmental variables in the Northwest Coasts of India
Arabian Journal of Geosciences (2024)
-
Population transcriptogenomics highlights impaired metabolism and small population sizes in tree frogs living in the Chernobyl Exclusion Zone
BMC Biology (2023)
-
Future distribution of the epiphytic leafless orchid (Dendrophylax lindenii), its pollinators and phorophytes evaluated using niche modelling and three different climate change projections
Scientific Reports (2023)