Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tropical cyclones and climate change

Abstract

Whether the characteristics of tropical cyclones have changed or will change in a warming climate — and if so, how — has been the subject of considerable investigation, often with conflicting results. Large amplitude fluctuations in the frequency and intensity of tropical cyclones greatly complicate both the detection of long-term trends and their attribution to rising levels of atmospheric greenhouse gases. Trend detection is further impeded by substantial limitations in the availability and quality of global historical records of tropical cyclones. Therefore, it remains uncertain whether past changes in tropical cyclone activity have exceeded the variability expected from natural causes. However, future projections based on theory and high-resolution dynamical models consistently indicate that greenhouse warming will cause the globally averaged intensity of tropical cyclones to shift towards stronger storms, with intensity increases of 2–11% by 2100. Existing modelling studies also consistently project decreases in the globally averaged frequency of tropical cyclones, by 6–34%. Balanced against this, higher resolution modelling studies typically project substantial increases in the frequency of the most intense cyclones, and increases of the order of 20% in the precipitation rate within 100 km of the storm centre. For all cyclone parameters, projected changes for individual basins show large variations between different modelling studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Past and extrapolated changes in Atlantic hurricane power dissipation index (PDI).
Figure 2: Tropical Atlantic indices.
Figure 3: Simulated versus observed Atlantic tropical cyclone interannual variability (approximately 1980–2006) using several methods.
Figure 4: Sensitivity of projected tropical cyclone activity to different climate models providing downscaling conditions.

Similar content being viewed by others

References

  1. Santer, B. D. et al. Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proc. Natl Acad. Sci. USA 103, 13905–13910 (2006).

    Article  Google Scholar 

  2. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  3. Karl, T. R. et al. (eds) Weather and Climate Extremes in a Changing Climate. Regions of Focus: North America, Hawaii, Caribbean, and US Pacific Islands. (US Climate Change Science Program and Subcommittee on Global Change Research, Department of Commerce, NOAA National Climatic Data Center, 2008).

    Google Scholar 

  4. Gillett, N. P., Stott, P. A. & Santer, B. D. Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence. Geophys. Res. Lett. 35, L09707 (2008).

    Article  Google Scholar 

  5. Pielke, R. A. Jr et al. Normalized hurricane damages in the United States: 1900–2005 Nat. Hazard. Rev. 9, 29–42 (2008).

    Article  Google Scholar 

  6. WMO International Workshop on Tropical Cyclones Statement on Tropical Cyclones and Climate Change (World Meteorological Organization, 2006); available at: http://www.wmo.int/pages/prog/arep/tmrp/documents/iwtc_statement.pdf and http://www.wmo.int/pages/prog/arep/tmrp/documents/iwtc_summary.pdf.

  7. Emanuel, K. Environmental factors affecting tropical cyclone power dissipation. J. Clim. 20, 5497–5509 (2007).

    Article  Google Scholar 

  8. Swanson, K. Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosys. 9, Q04V01 (2008).

    Article  Google Scholar 

  9. Vecchi, G. A., Swanson, K. L. & Soden, B. J. Whither hurricane activity. Science 322, 687–689 (2008).

    Article  Google Scholar 

  10. Oouchi, K. et al. Tropical cyclone climatology in a global-warming climate as simulated in a 20km-mesh global atmospheric model: frequency and wind intensity analysis. J. Meteorol. Soc. Jpn 84, 259–276 (2006).

    Article  Google Scholar 

  11. Emanuel, K., Sundararajan, R. & Williams, J. Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull. Am. Meteor. Soc. 89, 347–367 (2008).

    Article  Google Scholar 

  12. Knutson, T. R., Sirutis, J. J., Garner, S. T., Vecchi, G. A. & Held, I. Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nature Geosci. 1, 359–364 (2008).

    Article  Google Scholar 

  13. Bengtsson, L. et al. How may tropical cyclones change in a warmer climate. Tellus 59A, 539–561 (2007).

    Article  Google Scholar 

  14. Chan, J. C. L. Thermodynamic control on the climate of intense tropical cyclones. Proc. R. Soc. A. 465, 3011–3021 (2009).

    Article  Google Scholar 

  15. Holland, G. J. & Webster, P. J. Heightened tropical cyclone activity in the North Atlantic: natural variability or climate trend? Phil. Trans. R. Soc. A 365, 2695–2716 (2007).

    Article  Google Scholar 

  16. Mann, M. & Emanuel, K. Atlantic hurricane trends linked to climate change. Eos 87, 233–241 (2006).

    Article  Google Scholar 

  17. Mann, M. E., Sabbatelli, T. A. & Neu, U. Evidence for a modest undercount bias in early historical Atlantic tropical cyclone counts. Geophys. Res. Lett. 34, L22707 (2007).

    Article  Google Scholar 

  18. Zhang, R. & Delworth, T. L. A new method for attributing climate variations over the Atlantic Hurricane Basin's main development region. Geophys. Res. Lett. 36, L06701 (2009).

    Google Scholar 

  19. Shanahan, T. M. et al. Atlantic forcing of persistent droughts in West Africa. Science 324, 377–380 (2009).

    Article  Google Scholar 

  20. Vecchi, G. A. & Knutson, T. R. On estimates of historical North Atlantic tropical cyclone activity. J. Clim. 21, 3580–3600 (2008).

    Article  Google Scholar 

  21. Chang, E. K. M. & Guo, Y. Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophys. Res. Lett. 34, L14801 (2007).

    Article  Google Scholar 

  22. Landsea, C., Vecchi, G. A., Bengtsson, L. & Knutson, T. R. Impact of duration thresholds on Atlantic tropical cyclone counts. J. Clim. doi:10.1175/2009JCLI3034.1 (2009).

  23. Landsea, C. W. et al. A reanalysis of the 1911–20 Atlantic hurricane database. J. Clim. 21, 2138–2168 (2008).

    Article  Google Scholar 

  24. Mann, M. E., Woodruff, J. D., Donnelly, J. P. & Zhang, Z. Atlantic hurricanes and climate over the past 1,500 years. Nature 460, 880–883 (2009).

    Article  Google Scholar 

  25. Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H.-R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005).

    Article  Google Scholar 

  26. Chan, J. C. L. & Xu, M. Interannual and interdecadal variations of landfalling tropical cyclones in East Asia. Part I: Time series analysis. Int. J. Climatol. 29, 1285–1293 (2009).

    Article  Google Scholar 

  27. Kubota, H. & Chan, J. C. L. Interdecadal variability of tropical cyclone landfall in the Philippines from 1902 to 2005. Geophys. Res. Lett. 36, L12802 (2009).

    Article  Google Scholar 

  28. Gualdi, S., Scoccimarro, E. & Navarra, A. Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. J. Clim. 21, 5204–5228 (2008).

    Article  Google Scholar 

  29. Zhao, M., Held, I., Lin, S.-J. & Vecchi, G. A. Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50 km resolution GCM. J. Clim. 22, 6653–6678 (2009).

    Article  Google Scholar 

  30. LaRow, T. E., Lim, Y. K., Shin, D. W., Chassignet, E. P. & Cocke, S. Atlantic basin seasonal hurricane simulations. J. Clim. 21, 3191–3206 (2008).

    Article  Google Scholar 

  31. Chauvin, F., Royer, J.-F. & Déqué, M. Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Clim. Dynam. 27, 377–399 (2006).

    Article  Google Scholar 

  32. Sugi, M., Noda, A & Sato, N. Influence of global warming on tropical cyclone climatology: an experiment with the JMA global model. J. Meteorol. Soc. Jpn 80, 249–272 (2002).

    Article  Google Scholar 

  33. Held, I. M. & Soden, B. J. Robust responses of the hydrologic cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  34. Vecchi, G. A. & Soden, B. J. Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett. 34, L08702 (2007).

    Article  Google Scholar 

  35. Emanuel, K. A. The dependence of hurricane intensity on climate. Nature 326, 483–485 (1987).

    Article  Google Scholar 

  36. Holland, G. J. The maximum potential intensity of tropical cyclones. J. Atmos. Sci. 54, 2519–2541 (1997).

    Article  Google Scholar 

  37. Knutson, T. R. & Tuleya, R. E. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J. Clim. 17, 3477–3495 (2004).

    Article  Google Scholar 

  38. Bender, M. A. et al. Modeled impact of anthropogenic warming of the frequency of intense Atlantic hurricanes. Science 327, 454–458 (2010).

    Article  Google Scholar 

  39. Landsea, C. W., Harper, B. A., Hoarau, K. & Knaff, J. A. Can we detect trends in extreme tropical cyclones? Science 313, 452–454 (2006).

    Article  Google Scholar 

  40. Kamahori, H., Yamazaki, N. Mannoji, N. & Takahashi, K. Variability in intense tropical cyclone days in the western North Pacific. SOLA 2, 104–107 (2006).

    Article  Google Scholar 

  41. Chan, J. C. L. Comment on “changes in tropical cyclone number, duration, and intensity in a warming environment” Science 311, 1713 (2006).

    Article  Google Scholar 

  42. Kossin, J. P., Knapp, K. R., Vimont, D. J., Murnane, R. J. & Harper, B. A. A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett. 34, L04815 (2007).

    Article  Google Scholar 

  43. Elsner, J. B., Kossin, J. P. & Jagger, T. H. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).

    Article  Google Scholar 

  44. Kossin J. P. & Vimont, D. J. A more general framework for understanding Atlantic hurricane variability and trends. Bull. Am. Meteor. Soc. 88, 1767–1781 (2007).

    Article  Google Scholar 

  45. Sugi, M., Murakami, H. & Yoshimura, J. A reduction in global tropical cyclone frequency due to global warming. SOLA 5, 164–167 (2009).

    Article  Google Scholar 

  46. Trenberth, K. E., Fasullo, J. & Smith, L. Trends and variability in column-integrated atmospheric water vapor. Clim. Dynam. 24, 741–758 (2005).

    Article  Google Scholar 

  47. Lau, K.-M. & Wu, H. T. Detecting trends in tropical rainfall characteristics, 1979–2003 Int. J. Climatol. 27, 979–988 (2007).

    Article  Google Scholar 

  48. Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).

    Article  Google Scholar 

  49. Holland, G. J. Misuse of landfall as a proxy for Atlantic tropical cyclone activity. Eos 88, 349–350 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors constitute an expert team established by the World Meteorological Organization to provide advice to national meteorological and hydrological services on tropical cyclones and climate change. T.K. and J.L.M. are co-chairs of this team. J.L.M was supported by the West Australian Government Indian Ocean Climate Initiative. The team wishes to thank the Sultanate of Oman and Sultan Qaboos University for kindly sponsoring the initial discussion meeting for this report (March 2009 in Muscat, Oman). We also thank our colleagues for several helpful reviews, discussions and figure contributions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the assessments described in this report, and all contributed to the writing, with T.K. being the lead author.

Corresponding author

Correspondence to Thomas R. Knutson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 437 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knutson, T., McBride, J., Chan, J. et al. Tropical cyclones and climate change. Nature Geosci 3, 157–163 (2010). https://doi.org/10.1038/ngeo779

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo779

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene