Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion

Abstract

Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16Ink4a is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell–specific activation of p16Ink4a in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16Ink4a in beta cells induces hallmarks of senescence—including cell enlargement, and greater glucose uptake and mitochondrial activity—which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16Ink4a activity. We found that islets from human adults contain p16Ink4a-expressing senescent beta cells and that senescence induced by p16Ink4a in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16Ink4a and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p16 induces senescence of beta cells.
Figure 2: p16 expression enhances insulin secretion.
Figure 3: p16 expression increases glucose uptake and mitochondrial activity.
Figure 4: Increased insulin secretion in mature mice is driven by p16.
Figure 5: Senescent beta cells in human islets.
Figure 6: p16-induced senescence of human cells leads to enhanced GSIS.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Muñoz-Espín, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    PubMed  Google Scholar 

  2. van Deursen, J.M. The role of senescent cells in aging. Nature 509, 439–446 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    CAS  PubMed  Google Scholar 

  4. Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    PubMed  Google Scholar 

  5. Kim, W.Y. & Sharpless, N.E. The regulation of INK4-ARF in cancer and aging. Cell 127, 265–275 (2006).

    CAS  PubMed  Google Scholar 

  6. Nielsen, G.P. et al. Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues. Lab. Invest. 79, 1137–1143 (1999).

    CAS  PubMed  Google Scholar 

  7. Krishnamurthy, J. et al. Ink4a-Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Burd, C.E. et al. Monitoring tumorigenesis and senescence in vivo with a p16INK4a-luciferase model. Cell 152, 340–351 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    CAS  PubMed  Google Scholar 

  10. Janzen, V. et al. Stem cell aging modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443, 421–426 (2006).

    CAS  PubMed  Google Scholar 

  11. Molofsky, A.V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during aging. Nature 443, 448–452 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Baker, D.J. et al. Clearance of p16Ink4a-positive senescent cells delays aging-associated disorders. Nature 479, 232–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Baker, D.J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2015).

    Google Scholar 

  14. Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes Dev. 28, 99–114 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dörr, J.R. et al. Synthetic-lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421–425 (2013).

    PubMed  Google Scholar 

  16. Kaplon, J. et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109–112 (2013).

    CAS  PubMed  Google Scholar 

  17. Takebayashi, S. et al. Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells. Aging Cell 14, 689–697 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gumbiner, B. et al. Effects of aging on insulin secretion. Diabetes 38, 1549–1556 (1989).

    CAS  PubMed  Google Scholar 

  19. Iozzo, P. et al. Independent influence of age on basal insulin secretion in nondiabetic humans. J. Clin. Endocrinol. Metab. 84, 863–868 (1999).

    CAS  PubMed  Google Scholar 

  20. Basu, R. et al. Mechanisms of the age-associated deterioration in glucose tolerance: contribution of alterations in insulin secretion, action and clearance. Diabetes 52, 1738–1748 (2003).

    CAS  PubMed  Google Scholar 

  21. Kushner, J.A. The role of aging upon beta cell turnover. J. Clin. Invest. 123, 990–995 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, H. et al. Polycomb protein Ezh2 regulates pancreatic beta cell Ink4a-Arf expression and regeneration in diabetes mellitus. Genes Dev. 23, 975–985 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bao, X.Y., Xie, C. & Yang, M.S. Association between type 2 diabetes and CDKN2A/B: a meta-analysis study. Mol. Biol. Rep. 39, 1609–1616 (2012).

    CAS  PubMed  Google Scholar 

  24. Annicotte, J.S. et al. The CDK4-pRB-E2F1 pathway controls insulin secretion. Nat. Cell Biol. 11, 1017–1023 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. González-Navarro, H. et al. Increased dosage of Ink4-Arf protects against glucose intolerance and insulin resistance associated with aging. Aging Cell 12, 102–111 (2013).

    PubMed  Google Scholar 

  26. Moreno-Asso, A., Castaño, C., Grilli, A., Novials, A. & Servitja, J.M. Glucose regulation of a cell cycle gene module is selectively lost in mouse pancreatic islets during aging. Diabetologia 56, 1761–1772 (2013).

    CAS  PubMed  Google Scholar 

  27. Abella, A. et al. Cdk4 promotes adipogenesis through PPAR-γ activation. Cell Metab. 2, 239–249 (2005).

    CAS  PubMed  Google Scholar 

  28. Lee, Y. et al. Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510, 547–551 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruvinsky, I. et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev. 19, 2199–2211 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chicas, A. et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17, 376–387 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brady, C.A. et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145, 571–583 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Acosta, J.C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lujambio, A. et al. Non–cell autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Stolovich-Rain, M. et al. Weaning triggers a maturation step of pancreatic beta cells. Dev. Cell 32, 535–545 (2015).

    CAS  PubMed  Google Scholar 

  35. van Arensbergen, J. et al. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta cells to adopt a neural gene activity program. Genome Res. 20, 722–732 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Holland, A.M., Hale, M.A., Kagami, H., Hammer, R.E. & MacDonald, R.J. Experimental control of pancreatic development and maintenance. Proc. Natl. Acad. Sci. USA 99, 12236–12241 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gauthier, B.R. et al. PDX1 deficiency causes mitochondrial dysfunction and defective insulin secretion through TFAM suppression. Cell Metab. 10, 110–118 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wiederkehr, A. & Wollheim, C.B. Mitochondrial signals drive insulin secretion in the pancreatic beta cell. Mol. Cell. Endocrinol. 353, 128–137 (2012).

    CAS  PubMed  Google Scholar 

  39. Rane, S.G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta islet cell hyperplasia. Nat. Genet. 22, 44–52 (1999).

    CAS  PubMed  Google Scholar 

  40. Wicksteed, B. et al. Conditional gene targeting in mouse pancreatic beta cells: analysis of ectopic Cre transgene expression in the brain. Diabetes 59, 3090–3098 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Scharfmann, R. et al. Development of a conditionally immortalized human pancreatic beta cell line. J. Clin. Invest. 124, 2087–2098 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Morita, M. et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP–dependent translational regulation. Cell Metab. 18, 698–711 (2013).

    CAS  PubMed  Google Scholar 

  43. Koyanagi, M. et al. Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1. PLoS One 6, e23238 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fingar, D.C., Salama, S., Tsou, C., Harlow, E. & Blenis, J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1-eIF4E. Genes Dev. 16, 1472–1487 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dor, Y., Brown, J., Martinez, O.I. & Melton, D.A. Adult pancreatic beta cells are formed by self-duplication rather than by stem cell differentiation. Nature 429, 41–46 (2004).

    CAS  PubMed  Google Scholar 

  46. Ohn, J.H. et al. 10-year trajectory of beta cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes Endocrinol. 4, 27–34 (2016).

    CAS  PubMed  Google Scholar 

  47. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    CAS  PubMed  Google Scholar 

  48. Bandyopadhyay, D. et al. Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi. Aging Cell 6, 577–591 (2007).

    CAS  PubMed  Google Scholar 

  49. Chandra, T. et al. Global reorganization of the nuclear landscape in senescent cells. Cell Reports 10, 471–483 (2015).

    CAS  PubMed  Google Scholar 

  50. Giordano, E. et al. Beta cell size influences glucose-stimulated insulin secretion. Am. J. Physiol. 265, C358–C364 (1993).

    CAS  PubMed  Google Scholar 

  51. Correia-Melo, C. & Passos, J.F. Mitochondria: are they causal players in cellular senescence? Biochim. Biophys. Acta 1847, 1373–1379 (2015).

    CAS  PubMed  Google Scholar 

  52. Nicolay, B.N. et al. Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation. Genes Dev. 29, 1875–1889 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Avrahami, D. et al. Aging-dependent demethylation of regulatory elements correlates with chromatin state and improved beta cell function. Cell Metab. 22, 619–632 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ahmadian, M. et al. PPAR-γ signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557–566 (2013).

    CAS  PubMed  Google Scholar 

  55. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    CAS  PubMed  Google Scholar 

  56. Nardella, C., Clohessy, J.G., Alimonti, A. & Pandolfi, P.P. Pro-senescence therapy for cancer treatment. Nat. Rev. Cancer 11, 503–511 (2011).

    CAS  PubMed  Google Scholar 

  57. Turner, N.C. et al. Palbociclib in hormone receptor–positive advanced breast cancer. N. Engl. J. Med. 373, 209–219 (2015).

    CAS  PubMed  Google Scholar 

  58. Tokarsky-Amiel, R. et al. Dynamics of senescent cell formation and retention revealed by p14ARF induction in the epidermis. Cancer Res. 73, 2829–2839 (2013).

    CAS  PubMed  Google Scholar 

  59. Milo-Landesman, D. et al. Correction of hyperglycemia in diabetic mice transplanted with reversibly immortalized pancreatic beta cells controlled by the Tet-on regulatory system. Cell Transplant. 10, 645–650 (2001).

    CAS  PubMed  Google Scholar 

  60. Sharpless, N.E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001).

    CAS  PubMed  Google Scholar 

  61. Nir, T., Melton, D.A. & Dor, Y. Recovery from diabetes in mice by beta cell regeneration. J. Clin. Invest. 117, 2553–2561 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. O'Gorman, D. et al. Comparison of human islet isolation outcomes using a new mammalian tissue-free enzyme versus collagenase NB-1. Transplantation 90, 255–259 (2010).

    CAS  PubMed  Google Scholar 

  63. Dai, C. et al. Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets. Diabetologia 55, 707–718 (2012).

    CAS  PubMed  Google Scholar 

  64. Walsh, R.M. et al. Improved quality of life following total pancreatectomy and auto–islet transplantation for chronic pancreatitis. J. Gastrointest. Surg. 16, 1469–1477 (2012).

    CAS  PubMed  Google Scholar 

  65. Debacq-Chainiaux, F., Erusalimsky, J.D., Campisi, J. & Toussaint, O. Protocols to detect senescence-associated β-galactosidase (SA–β-gal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 4, 1798–1806 (2009).

    CAS  PubMed  Google Scholar 

  66. Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Barbacid for CDK4lsl-R24C mice, L. Philipson for MIP-CreER mice, R. Scharfmann for the EndoC-βH2 cells; S. Efrat for the pTRIPΔU3-CMV-nlsCre vector and C. Wright for the Pdx1-specific antibody. We thank N.E. Kidess-Bassir for histological preparation and T. Szoke for experimental assistance. This research was supported by a postdoctoral fellowship from the Juvenile Diabetes Research Foundation (A.H.) and by grants from Israel Science Foundation (grant no. 1009/13; I.B.-P.), the Jacob and Lena Joels Memorial Foundation Senior Lectureship for Excellence in the Life and Medical Sciences (I.B.-P.), Diabetes Onderzoek Nederland (Y.D. and I.B.-P.), the Alex U. Soyka program (Y.D. and I.B.-P.), the Juvenile Diabetes Research Foundation (Y.D. and A.C.P.), the US National Institutes of Health (NIH) Beta Cell Biology Consortium (Y.D.), the Leona M. and Harry B. Helmsley Charitable Trust (Y.D.), the Israeli Centers Of Research Excellence Program of the Planning and Budgeting Committee and the Israel Science Foundation (grant no. 41.11; Y.D.), the United States Agency for International Development's American Schools and Hospitals Abroad Program (Y.D. and I.B.-P.), the Network for Pancreatic Organ Donors with Diabetes (nPOD) (Y.D.), the US Department of Veterans Affairs (A.C.P.), the National Institute of Diabetes and Digestive and Kidney Diseases–NIH (grant no. DK089572 (A.C.P.), DK72473 (A.C.P.) and DK104211 (A.C.P.)), and the Vanderbilt Diabetes Research and Training Center (grant no. DK20593; A.C.P.). Organ procurement organizations partnering with nPOD are listed at http://www.jdrfnpod.org/our-partners.php.

Author information

Authors and Affiliations

Authors

Contributions

A.H., I.B.-P. and Y.D. designed experiments, analyzed data and wrote the manuscript; A.H. performed experiments; A.K., N.A., Y.G., E.H., S.A., A.S., R.C., Y.F., D.S., A.Z., S.T.-B., B.G., C.D. and A.C.P. did experiments and contributed experimental data; R.Z.G. and Y.N. performed bioinformatic analyses; A.M.J.S. contributed human islet samples; and M.A.M. assisted in generation of the tet-p16 mice.

Corresponding authors

Correspondence to Yuval Dor or Ittai Ben-Porath.

Ethics declarations

Competing interests

A.H., A.K., Y.D. and I.B.-P. are inventors of intellectual property related to this work.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 2–3 (PDF 3286 kb)

Supplementary Table 1

Gene expression changes in p16-expressing beta cells (XLSX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helman, A., Klochendler, A., Azazmeh, N. et al. p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion. Nat Med 22, 412–420 (2016). https://doi.org/10.1038/nm.4054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4054

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing