Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel viral mechanism for dysregulation of β-catenin in Kaposi's sarcoma–associated herpesvirus latency

Abstract

The Kaposi's sarcoma–associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) is expressed in all KSHV-associated tumors, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). We found that β-catenin is overexpressed in both PEL cells and KS tissue. Introduction of anti-LANA small interfering RNA (siRNA) into PEL cells eliminated β-catenin accumulation; LANA itself upregulated expression of β-catenin in transfected cells. LANA stabilizes β-catenin by binding to the negative regulator GSK-3β, causing a cell cycle–dependent nuclear accumulation of GSK-3β. The LANA C terminus contains sequences similar to the GSK-3β-binding domain of Axin. Disruption of this region resulted in a mutant LANA that failed to re-localize GSK-3β or stabilize β-catenin. The importance of this pathway to KSHV-driven cell proliferation was highlighted by the observation that LANA, but not mutant LANA, stimulates entry into S phase. Redistribution of GSK-3β can therefore be a source of β-catenin dysregulation in human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: β-catenin is abundant in PEL cells and KS tissue.
Figure 2: β-catenin is stabilized in PEL cells.
Figure 3: LANA mediates β-catenin stabilization and downstream Tcf and Lef responses.
Figure 4: LANA interacts with and re-localizes GSK-3β.
Figure 5: Binding to GSK-3β is essential for LANA-mediated β-catenin dysregulation.
Figure 6: LANA stimulates S-phase entry.

Similar content being viewed by others

References

  1. Chang, Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865–1869 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Moore, P.S. & Chang, Y. Detection of herpesvirus-like DNA sequences in Kaposi's sarcoma in patients with and without HIV infection. N. Engl. J. Med. 332, 1181–1185 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Cesarman, E., Chang, Y., Moore, P.S., Said, J.W. & Knowles, D.M. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332, 1186–1191 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Soulier, J. et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86, 1276–1280 (1995).

    CAS  PubMed  Google Scholar 

  5. Kedes, D.H., Lagunoff, M., Renne, R. & Ganem, D. Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi's sarcoma-associated herpesvirus. J. Clin. Invest. 100, 2606–2610 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rainbow, L. et al. The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J. Virol. 71, 5915–5921 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dupin, N. et al. Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc. Natl. Acad. Sci. USA. 96, 4546–4551 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parravicini, C. et al. Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Am. J. Pathol. 156, 743–749 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Olsen, S.J., Sarid, R., Chang, Y. & Moore, P.S. Evaluation of the latency-associated nuclear antigen (ORF73) of Kaposi's sarcoma-associated herpesvirus by peptide mapping and bacterially expressed recombinant western blot assay. J. Infect. Dis. 182, 306–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Ballestas, M.E., Chatis, P.A. & Kaye, K.M. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284, 641–644 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Cotter, M.A. & Robertson, E.S. The latency-associated nuclear antigen tethers the Kaposi's sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264, 254–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Hu, J., Garber, A.C. & Renne, R. The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J. Virol. 76, 11677–11687 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krithivas, A., Young, D.B., Liao, G., Greene, D. & Hayward, S.D. Human herpesvirus 8 LANA interacts with proteins of the mSin3 corepressor complex and negatively regulates Epstein-Barr virus gene expression in dually infected PEL cells. J. Virol. 74, 9637–9645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Radkov, S.A., Kellam, P. & Boshoff, C. The latent nuclear antigen of Kaposi sarcoma–associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat. Med. 6, 1121–1127 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Friborg, J.J., Kong, W., Hottiger, M.O. & Nabel, G.J. p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402, 889–894 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  17. Kitagawa, M. et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 18, 2401–2410 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ben-Ze'ev, A., Shtutman, M. & Zhurinsky, J. The integration of cell adhesion with gene expression: the role of β-catenin. Exp. Cell Res. 261, 75–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Barker, N., Morin, P.J. & Clevers, H. The yin-yang of TCF/β-catenin signaling. Adv. Cancer Res. 77, 1–24 (2000).

    CAS  PubMed  Google Scholar 

  20. He, T.C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Morin, P.J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Sarid, R., Flore, O., Bohenzky, R.A., Chang, Y. & Moore, P.S. Transcription mapping of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J. Virol. 72, 1005–1012 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fakhari, F.D. & Dittmer, D.P. Charting latency transcripts in Kaposi's sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR. J. Virol. 76, 6213–6223 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jenner, R.G., Alba, M.M., Boshoff, C. & Kellam, P. Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J. Virol. 75, 891–902 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rivas, C., Thlick, A.E., Parravicini, C., Moore, P.S. & Chang, Y. Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J. Virol. 75, 429–438 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Diehl, J.A., Cheng, M., Roussel, M.F. & Sherr, C.J. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499–3511 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Webster, M.T. et al. Sequence variants of the axin gene in breast, colon, and other cancers: an analysis of mutations that interfere with GSK3 binding. Gene Chromosomes Cancer 28, 443–453 (2000).

    Article  CAS  Google Scholar 

  31. Reya, T. et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 13, 15–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. van de Wetering, M., Oosterwegel, M., van Norren, K. & Clevers, H. Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J. 12, 3847–3854 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hovanes, K. et al. β-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat. Genet. 28, 53–57 (2001).

    CAS  PubMed  Google Scholar 

  34. Wright, M., Aikawa, M., Szeto, W. & Papkoff, J. Identification of a Wnt-responsive signal transduction pathway in primary endothelial cells. Biochem. Biophys. Res. Commun. 263, 384–388 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Morin, P.J. β-catenin signaling and cancer. Bioessays 21, 1021–1030 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Schreiber, E., Matthias, P., Muller, M.M. & Schaffner, W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 17, 6419 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, F.Y. et al. Origin-independent assembly of Kaposi's sarcoma-associated herpesvirus DNA replication compartments in transient cotransfection assays and association with the ORF-K8 protein and cellular PML. J. Virol. 75, 1487–1506 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ciufo, D.M. et al. Spindle cell conversion by Kaposi's sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J. Virol. 75, 5614–5626 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Kinzler and B. Vogelstein for the β-catenin vectors, the GL3-OT and GL3-OF reporters and SW480 cells; F. McCormick for GSK-3β DNA; and R. Agami for pSuper. This work was supported by US National Institutes of Health grant R01 CA85151 to S.D.H. and P01 CA81400 to G.S.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Diane Hayward.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimuro, M., Wu, F., apRhys, C. et al. A novel viral mechanism for dysregulation of β-catenin in Kaposi's sarcoma–associated herpesvirus latency. Nat Med 9, 300–306 (2003). https://doi.org/10.1038/nm829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm829

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing