Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection

Abstract

Integrating nanophotonics with electronics could enhance and/or enable opportunities in areas ranging from communications and computing to novel diagnostics1,2. Light sources and detectors are important elements for integration1, and key progress has been made using semiconducting nanowires3,4,5 and carbon nanotubes to yield electrically driven sources6,7,8,9,10,11,12 and photoconductor detectors13,14,15,16,17. Detection with photoconductors has relatively poor sensitivity at the nanometre scale, and thus large amplification is required to detect low light levels and ultimately single photons with reasonable response time. Here, we report avalanche multiplication of the photocurrent in nanoscale p–n diodes consisting of crossed silicon–cadmium sulphide nanowires. Electrical transport and optical measurements demonstrate that the nanowire avalanche photodiodes (nanoAPDs) have ultrahigh sensitivity with detection limits of less than 100 photons, and subwavelength spatial resolution of at least 250 nm. Crossed nanowire arrays also show that nanoAPDs are reproducible and can be addressed independently without cross-talk. NanoAPDs and arrays could open new opportunities for ultradense integrated systems, sensing and imaging applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of nanowire APDs.
Figure 2: Temperature-dependent I –V for n-CdS/p-Si crossed-nanowire APDs as a function of p-Si dopant level.
Figure 3: Crossed-nanowire APD responsivity.
Figure 4: Nanowire APD arrays.

Similar content being viewed by others

References

  1. Saleh, B. E. A. & Teich, M. C. (eds) Fundamentals of Photonics (Wiley, New York, 1991).

  2. Prasad, P. N. (ed.) Elements of Nanophotonics (Wiley, New York, 2004).

  3. Lieber, C. M. Nanoscale science and technology: Building a big future from small things. Mater. Res. Soc. Bull. 28, 486–491 (2003).

    Article  Google Scholar 

  4. Samuelson, L. et al. Semiconductor nanowires for 0D and 1D physics and applications. Physica E 25, 313–318 (2004).

    Article  Google Scholar 

  5. Bakkers, E. P. A. M. et al. Epitaxial growth of InP nanowires on germanium. Nature Mater. 3, 769–773 (2004).

    Article  Google Scholar 

  6. Duan, X., Huang, Y., Cui, Y., Wang, J. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

    Article  Google Scholar 

  7. Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    Article  Google Scholar 

  8. Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    Article  Google Scholar 

  9. Huang, Y., Duan, X. & Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 1, 142–147 (2005).

    Article  Google Scholar 

  10. Wu, Y., Xiang, J., Yang, C., Lu, W. & Lieber, C. M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61–65 (2004).

    Article  Google Scholar 

  11. Lew, K.-K. et al. Structural and electrical properties of trimethylboron-doped silicon nanowires. Appl. Phys. Lett. 85, 3101–3103 (2004).

    Article  Google Scholar 

  12. Qian, F., Gradecak, S., Li, Y., Wen, C.-Y. & Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287–2291 (2005).

    Article  Google Scholar 

  13. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    Article  Google Scholar 

  14. Kind, H., Yan, H., Messer, B., Law, M. & Yang, P. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158–160 (2002).

    Article  Google Scholar 

  15. Freitag, M., Martin, Y., Misewich, J. A., Martel, R. & Avouris, Ph. Photoconductivity of single carbon nanotubes. Nano Lett. 3, 1067–1071 (2003).

    Article  Google Scholar 

  16. Gu, Y. et al. Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl. Phys. Lett. 87, 043111 (2005).

    Article  Google Scholar 

  17. He, J. H., Lao, C. S., Chen, L. J., Davidovic, D. & Wang, Z. L. Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties. J. Am. Chem. Soc. 127, 16376–16377 (2005).

    Article  Google Scholar 

  18. Huang, Y., Duan, X., Wei, Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    Article  Google Scholar 

  19. Seymour, J. (ed.) Electronic Devices & Components (Longman Scientific and Technical, Essex, 1988).

  20. Yuan, P. et al. A new look at impact ionization-part II: Gain and noise in short avalanche photodiodes. IEEE Trans. Electron Devices 46, 1632–1639 (1999).

    Article  Google Scholar 

  21. Shin, Y. J. et al. Photocurrent study on the splitting of the valence band for a CdS single crystal platelet. Phys. Rev. B 44, 5522–5526 (1991).

    Article  Google Scholar 

  22. Abe, T. et al. Demonstration of blue-ultraviolet avalanche photodiodes of II-VI wide bandgap compounds grown by MBE. J. Cryst. Growth 214–215, 1134–1137 (2000).

    Article  Google Scholar 

  23. Lauhon, L. J., Gudiksen, M. S., Wang, D. & Lieber, C. M. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    Article  Google Scholar 

  24. Brown, R. G. W., Ridley, K. D. & Rarity, J. G. Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching. Appl. Opt. 25, 4122–4126 (1986).

    Article  Google Scholar 

  25. Campbell, J. C. et al. Recent advances in avalanche photodiodes. IEEE J. Sel. Top. Quantum Electron. 10, 777–797 (2002).

    Article  Google Scholar 

  26. Sun, X. & Davidson, F. M. Photon counting with silicon avalanche photodiodes. J. Lightwave Technol. 10, 1023–1032 (1992).

    Article  Google Scholar 

  27. Hayden, O. & Payne, C. K. Nanophotonic light sources for fluorescence spectroscopy and cellular imaging. Angew. Chem. Int. Edn 44, 1395–1398 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Riess for discussions. We gratefully acknowledge the assistance of H. Babcock and J. Xiang, and we thank X. Zhuang for the use of their optical microscope system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Lieber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayden, O., Agarwal, R. & Lieber, C. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Mater 5, 352–356 (2006). https://doi.org/10.1038/nmat1635

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1635

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing