Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A d.c. magnetic metamaterial

Abstract

Electromagnetic metamaterials1,2,3 are a class of materials that have been artificially structured on a subwavelength scale. They are currently the focus of a great deal of interest because they allow access to previously unrealizable properties such as a negative refractive index4. Most metamaterial designs have so far been based on resonant elements, such as split rings5, and research has concentrated on microwave frequencies and above. Here, we present the first experimental realization of a non-resonant metamaterial designed to operate at zero frequency. Our samples are based on a recently proposed template6 for an anisotropic magnetic metamaterial consisting of an array of superconducting plates. Magnetometry experiments show a strong, adjustable diamagnetic response when a field is applied perpendicular to the plates. We have calculated the corresponding effective permeability, which agrees well with theoretical predictions. Applications for this metamaterial may include non-intrusive screening of weak d.c. magnetic fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram showing the layers of square superconducting plates combined into a tetragonal lattice.
Figure 2: Implementation of the metamaterial design.
Figure 3: The effective d.c. susceptibility dm/dH as a function of gap size and sample orientation.

Similar content being viewed by others

References

  1. Caloz, C. & Itoh, T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, New Jersey, 2005).

    Book  Google Scholar 

  2. Shalaev, V. M. & Boardman, A. Focus issue on metamaterials. J. Opt. Soc. Am. B 23, 386–387 (2006).

    Article  CAS  Google Scholar 

  3. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  CAS  Google Scholar 

  4. Smith, D. R. et al. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  CAS  Google Scholar 

  5. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

    Article  Google Scholar 

  6. Wood, B. & Pendry, J. B. Metamaterials at zero frequency. J. Phys. Condens. Matter 19, 076208 (2007).

    Article  CAS  Google Scholar 

  7. Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    Article  CAS  Google Scholar 

  8. Wiltshire, M. C. K. Radio frequency (RF) metamaterials. Phys. Status Solidi B 244, 1227–1236 (2007).

    Article  CAS  Google Scholar 

  9. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  CAS  Google Scholar 

  10. Parazzoli, C. G. et al. Experimental verification and simulation of negative index of refraction using Snell’s law. Phys. Rev. Lett. 90, 107401 (2003).

    Article  CAS  Google Scholar 

  11. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  CAS  Google Scholar 

  12. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  CAS  Google Scholar 

  13. Ward, A. J. & Pendry, J. B. Refraction and geometry in Maxwell’s equations. J. Mod. Opt. 43, 773–793 (1996).

    Article  Google Scholar 

  14. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  CAS  Google Scholar 

  15. Egloff, C., Raychaudhuri, A. K. & Rinderer, L. Penetration of a magnetic-field into superconducting lead and lead-indium alloys. J. Low Temp. Phys. 52, 163–185 (1983).

    Article  CAS  Google Scholar 

  16. Chen, D. X., Pardo, E. & Sanchez, A. Demagnetizing factors for rectangular prisms. IEEE Trans. Magn. 41, 2077–2088 (2005).

    Article  Google Scholar 

  17. Pardo, E., Chen, D. X. & Sanchez, A. Demagnetizing factors for completely shielded rectangular prisms. J. Appl. Phys. 96, 5365–5369 (2004).

    Article  CAS  Google Scholar 

  18. Yurkin, M. A. & Hoekstra, A. G. The discrete dipole approximation: An overview and recent developments. J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).

    Article  CAS  Google Scholar 

  19. Fabbricatore, P., Farinon, S., Innocenti, S. & Gomory, F. Magnetic flux shielding in superconducting strip arrays. Phys. Rev. B 61, 6413–6421 (2000).

    Article  CAS  Google Scholar 

  20. Pardo, E., Sanchez, A. & Navau, C. Magnetic properties of arrays of superconducting strips in a perpendicular field. Phys. Rev. B 67, 104517 (2003).

    Article  Google Scholar 

  21. Volkozub, A. V. et al. Current distributions in multifilamentary conductors: The influence of intergrowths. Physica C 310, 159–162 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was financially supported under EPSRC GR/T03802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnus, F., Wood, B., Moore, J. et al. A d.c. magnetic metamaterial. Nature Mater 7, 295–297 (2008). https://doi.org/10.1038/nmat2126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing