Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and magnetic phase diagram of CeFeAsO1− xFx and its relation to high-temperature superconductivity

Abstract

Recently, high-transition-temperature (high-Tc) superconductivity was discovered in the iron pnictide RFeAsO1−xFx (R, rare-earth metal) family of materials. We use neutron scattering to study the structural and magnetic phase transitions in CeFeAsO1−xFx as the system is tuned from a semimetal to a high-Tc superconductor through fluorine (F) doping, x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a collinear antiferromagnetic order with decreasing temperature. With increasing fluorine doping, the structural phase transition decreases gradually and vanishes within the superconductivity dome near x=0.10, whereas the antiferromagnetic order is suppressed before the appearance of superconductivity for x>0.06, resulting in an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO1−xFx with other Fe-based superconductors suggests that the structural perfection of the Fe–As tetrahedron is important for the high-Tc superconductivity in these Fe pnictides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Low-temperature magnetic structures for Ce and Fe in CeFeAsO and the structural and magnetic phase diagram of CeFeAsO1−xFx.
Figure 2: Structural and magnetic phase transition temperatures as a function of increasing F doping in CeFeAsO1−xFx.
Figure 3: Low-temperature lattice structure and tetragonal to orthorhombic structural phase transition temperature for superconducting CeFeAsO1− xFx with x=0.08 and 0.10.
Figure 4: Low-temperature structural evolution of CeFeAsO1−xFx as a function of F doping obtained from analysis of the BT-1 data.
Figure 5: Fe–As(P)–Fe bond angles, Fe–Fe and Fe–As(P) distances for different Fe-based superconductors.

Similar content being viewed by others

References

  1. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  CAS  Google Scholar 

  2. Birgeneau, R. J., Stock, C., Tranquada, J. M. & Yamada, K. Magnetic neutron scattering in hole-doped cuprate superconductors. J. Phys. Soc. Jpn 75, 111003 (2006).

    Article  Google Scholar 

  3. Tranquada, J. M. in Handbook of High-Temperature Superconductivity (eds Schrieffer, J. R. & Brooks, J. S.) 257 (Springer, 2007).

    Book  Google Scholar 

  4. Fujita, M. et al. Magnetic and superconducting phase diagram of electron-doped Pr1−xLaCexCuO4 . Phys. Rev. B 67, 014514 (2003).

    Article  Google Scholar 

  5. Yu, W., Higgins, J. S., Bach, P. & Greene, R. L. Transport evidence of a magnetic quantum phase transition in electron-doped high-temperature superconductors. Phys. Rev. B 76, 020503(R) (2007).

    Article  Google Scholar 

  6. Kamihara, Y., Watanabe, T, Hirano, M. & Hosono, H. Iron-based layered superconductor LaO1−xFxFeAs (x=0.05–0.12) with Tc=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  CAS  Google Scholar 

  7. Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1−xFx . Nature 453, 761–762 (2008).

    Article  CAS  Google Scholar 

  8. Chen, G. F. et al. Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1−xFxFeAs. Phys. Rev. Lett. 100, 247002 (2008).

    Article  CAS  Google Scholar 

  9. Ren, Z.-A. et al. Superconductivity and phase diagram in the iron-based arsenic-oxides ReFeAsO1−δ (Re=rare earth metal) without F-Doping. Euro. Phys. Lett. 83, 17002 (2008).

    Article  Google Scholar 

  10. Bos, J.-W. G. et al. High pressure synthesis of late rare earth RFeAs(O,F) superconductors: R=Tb and Dy. Chem. Commun. 3634–3635 (2008).

  11. Wen, H. H., Mu, G., Fang, L., Yang, H. & Zhu, X. Y. Superconductivity at 25 K in hole-doped La1−xSrxOFeAs. Euro. Phys. Lett. 82, 17009 (2008).

    Article  Google Scholar 

  12. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide Ba1−xKxFe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Article  Google Scholar 

  13. de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).

    Article  CAS  Google Scholar 

  14. Kitao, S. et al. Spin ordering in LaOFeAs and its suppression in superconductor LaO0.89F0.11FeAs probed by Mössbauer spectroscopy. J. Phys. Soc. Jpn 77, 103706 (2008).

    Article  Google Scholar 

  15. Carlo, J. P. et al. μSR studies of RE(O,F)FeAs (RE=La, Nd, Ce) and LaOFeP systems: Possible incommensurate/stripe magnetism and superfluid density. Preprint at <http://arxiv.org/abs/0805.2186v1> (2008).

  16. Si, Q. & Abrahams, E. Strong correlations and magnetic frustration in the high Tc iron pnictides. Phys. Rev. Lett. 101, 076401 (2008).

    Article  Google Scholar 

  17. Fang, C., Yao, H., Tsai, W. F., Hu, J. P. & Kivelson, S. A. Theory of electron nematic order in LaOFeAs. Phys. Rev. B 77, 224509 (2008).

    Article  Google Scholar 

  18. Xu, C. K., Müller, M. & Sachdev, S. Ising and spin orders in iron-based superconductors. Phys. Rev. B 78, 020501(R) (2008).

    Article  Google Scholar 

  19. Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−xFx . Phys. Rev. Lett. 101, 057003 (2008).

    Article  CAS  Google Scholar 

  20. Yin, Z. P. et al. Electron–hole symmetry and magnetic coupling in antiferromagnetic LaFeAsO. Phys. Rev. Lett. 101, 057001 (2008).

    Article  Google Scholar 

  21. Ma, F. J. & Lu, Z.-Y. Iron-based layered compound LaFeAsO is an antiferromagnetic semimetal. Phys. Rev. B 78, 033111 (2008).

    Article  Google Scholar 

  22. Haule, K. & Kotliar, G. Coherence-incoherence crossover in the normal state of iron-oxypnictides and importance of the Hund’s rule coupling. Preprint at <http://arxiv.org/abs/0805.0722v1> (2008).

  23. Tegel, M., Schellenberg, I., Röttgen, R. & Johrendt, D. A 57Fe Mössbauer spectroscopy study of the 7 K superconductor LaFePO. Preprint at <http://arxiv.org/abs/0805.1208> (2008).

  24. McQueen, T. M. et al. Intrinsic properties of stoichiometric LaOFeP. Phys. Rev. B 78, 024521 (2008).

    Article  Google Scholar 

  25. Rotter, M. et al. Spin density wave anomaly at 140 K in the ternary iron arsenide BaFe2As2 . Phys. Rev. B 78, 020503(R) (2008).

    Article  Google Scholar 

  26. Nomura, T. et al. Crystallographic phase transition and high-Tc superconductivity in LaOFeAs:F. Preprint at <http://arxiv.org/abs/0804.3569> (2008).

  27. Kimber, S. A. J. et al. Magnetic ordering and negative thermal expansion in PrFeAsO. Phys. Rev. B 78, 140503 (2008).

    Article  Google Scholar 

  28. Zhao, J. et al. Lattice and magnetic structures of PrFeAsO, PrFeAsO0.85F0.15, and PrFeAsO0.85 . Phys. Rev. B 78, 132504 (2008).

    Article  Google Scholar 

  29. Chen, Y. et al. Magnetic order of the iron spins in NdOFeAs. Phys. Rev. B 78, 064515 (2008).

    Article  Google Scholar 

  30. Dong, J. et al. Competing orders and spin-density-wave instability in LaO1−xFxFeAs. Euro. Phys. Lett. 83, 27006 (2008).

    Article  Google Scholar 

  31. Komura, S., Hamaguchi, Y. & Kunitomi, N. Experimental test of rigid band models for Cr by means of Cr–V–Mn ternary dilute alloys. J. Phys. Soc. Jpn 23, 171–179 (1967).

    Article  CAS  Google Scholar 

  32. Facett, E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 60, 209–283 (1988).

    Article  Google Scholar 

  33. Maier, T. A. & Scalapino, D. J. Neutron scattering as a probe of the Fe-pnicitide superconducting gap. Phys. Rev. B 78, 020514 (2008).

    Article  Google Scholar 

  34. Zhang, C. L. et al. X-ray absorption spectroscopy measurement on the LaO1−xFexFeAs system. Preprint at <http://arxiv.org/abs/0808.2134> (2008).

  35. Wu, J. S., Phillips, P. & Castro Neto, A. H. Theory of the magnetic moment in iron pnictides. Phys. Rev. Lett. 101, 126401 (2008).

    Article  Google Scholar 

  36. Yildirim, T. Origin of the ∼150 K anomaly in LaOFeAs; competing antiferromagnetic superexchange interactions, frustration, and structural phase transition. Phys. Rev. Lett. 101, 057010 (2008).

    Article  CAS  Google Scholar 

  37. Kamihara, Y. et al. Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128, 10012–10013 (2006).

    Article  CAS  Google Scholar 

  38. Qiu, Y. et al. Structure and magnetic order in the NdFeAsO1−xFx superconductor system. Preprint at <http://arxiv.org/abs/0806.2195v4> (2008).

  39. Tarantini, C et al. Can antiferromagnetism and superconductivity coexist in the high-field paramagnetic superconductor Nd(O,F)FeAs? Preprint at <http://arxiv.org/abs/0805.4445v1> (2008).

  40. Luetkens, H. et al. Electronic phase diagram of the LaO1−xFxFeAs superconductor. Preprint at <http://arxiv.org/abs/0806.3533> (2008).

  41. Margadonna, S. et al. Crystal structure and phase transitions across the metal-superconductor boundary in the SmFeAsO1−xFx (0<x<0.20) family. Preprint at <http://arxiv.org/abs/0806.3962> (2008).

  42. Drew, A. J. et al. Coexistence of static magnetism and superconductivity in SmFeAsO1−xFx as revealed by muon spin rotation. Preprint at <http://arxiv.org/abs/0807.4876> (2008).

  43. Huang, Q. et al. Doping evolution of antiferromagnetic order and structure distortion in LaFeAsO1−xFx . Phys. Rev. B 78, 054529 (2008).

    Article  Google Scholar 

  44. Liu, R. H. et al. Anomalous transport properties and phase diagram of the FeAs based SmFeAsO1−xFx superconductors. Phys. Rev. Lett. 101, 087001 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Dagotto, A. Moreo, R. Fishman and T. Maier for helpful discussions. We also thank J. L. Zarestky for his help on the HB-3 measurements. This work is supported by the US National Science Foundation through DMR-0756568 and by the US Department of Energy, Division of Materials Science, Basic Energy Sciences, through DOE DE-FG02-05ER46202. This work is also supported in part by the US Department of Energy, Division of Scientific User Facilities, Basic Energy Sciences. The work at the Institute of Physics, Chinese Academy of Sciences, is supported by the National Science Foundation of China, the Chinese Academy of Sciences ITSNEM and the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Dai.

Supplementary information

Supplementary Information

Supplementary Information (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Huang, Q., de la Cruz, C. et al. Structural and magnetic phase diagram of CeFeAsO1− xFx and its relation to high-temperature superconductivity. Nature Mater 7, 953–959 (2008). https://doi.org/10.1038/nmat2315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing