Abstract
Recently, high-transition-temperature (high-Tc) superconductivity was discovered in the iron pnictide RFeAsO1âxFx (R, rare-earth metal) family of materials. We use neutron scattering to study the structural and magnetic phase transitions in CeFeAsO1âxFx as the system is tuned from a semimetal to a high-Tc superconductor through fluorine (F) doping, x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a collinear antiferromagnetic order with decreasing temperature. With increasing fluorine doping, the structural phase transition decreases gradually and vanishes within the superconductivity dome near x=0.10, whereas the antiferromagnetic order is suppressed before the appearance of superconductivity for x>0.06, resulting in an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO1âxFx with other Fe-based superconductors suggests that the structural perfection of the FeâAs tetrahedron is important for the high-Tc superconductivity in these Fe pnictides.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17â85 (2006).
Birgeneau, R. J., Stock, C., Tranquada, J. M. & Yamada, K. Magnetic neutron scattering in hole-doped cuprate superconductors. J. Phys. Soc. Jpn 75, 111003 (2006).
Tranquada, J. M. in Handbook of High-Temperature Superconductivity (eds Schrieffer, J. R. & Brooks, J. S.) 257 (Springer, 2007).
Fujita, M. et al. Magnetic and superconducting phase diagram of electron-doped Pr1âxLaCexCuO4 . Phys. Rev. B 67, 014514 (2003).
Yu, W., Higgins, J. S., Bach, P. & Greene, R. L. Transport evidence of a magnetic quantum phase transition in electron-doped high-temperature superconductors. Phys. Rev. B 76, 020503(R) (2007).
Kamihara, Y., Watanabe, T, Hirano, M. & Hosono, H. Iron-based layered superconductor LaO1âxFxFeAs (x=0.05â0.12) with Tc=26âK. J. Am. Chem. Soc. 130, 3296â3297 (2008).
Chen, X. H. et al. Superconductivity at 43âK in SmFeAsO1âxFx . Nature 453, 761â762 (2008).
Chen, G. F. et al. Superconductivity at 41âK and its competition with spin-density-wave instability in layered CeO1âxFxFeAs. Phys. Rev. Lett. 100, 247002 (2008).
Ren, Z.-A. et al. Superconductivity and phase diagram in the iron-based arsenic-oxides ReFeAsO1âδ (Re=rare earth metal) without F-Doping. Euro. Phys. Lett. 83, 17002 (2008).
Bos, J.-W. G. et al. High pressure synthesis of late rare earth RFeAs(O,F) superconductors: R=Tb and Dy. Chem. Commun. 3634â3635 (2008).
Wen, H. H., Mu, G., Fang, L., Yang, H. & Zhu, X. Y. Superconductivity at 25âK in hole-doped La1âxSrxOFeAs. Euro. Phys. Lett. 82, 17009 (2008).
Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38âK in the iron arsenide Ba1âxKxFe2As2 . Phys. Rev. Lett. 101, 107006 (2008).
de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1âxFxFeAs systems. Nature 453, 899â902 (2008).
Kitao, S. et al. Spin ordering in LaOFeAs and its suppression in superconductor LaO0.89F0.11FeAs probed by Mössbauer spectroscopy. J. Phys. Soc. Jpn 77, 103706 (2008).
Carlo, J. P. et al. μSR studies of RE(O,F)FeAs (RE=La, Nd, Ce) and LaOFeP systems: Possible incommensurate/stripe magnetism and superfluid density. Preprint at <http://arxiv.org/abs/0805.2186v1> (2008).
Si, Q. & Abrahams, E. Strong correlations and magnetic frustration in the high Tc iron pnictides. Phys. Rev. Lett. 101, 076401 (2008).
Fang, C., Yao, H., Tsai, W. F., Hu, J. P. & Kivelson, S. A. Theory of electron nematic order in LaOFeAs. Phys. Rev. B 77, 224509 (2008).
Xu, C. K., Müller, M. & Sachdev, S. Ising and spin orders in iron-based superconductors. Phys. Rev. B 78, 020501(R) (2008).
Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1âxFx . Phys. Rev. Lett. 101, 057003 (2008).
Yin, Z. P. et al. Electronâhole symmetry and magnetic coupling in antiferromagnetic LaFeAsO. Phys. Rev. Lett. 101, 057001 (2008).
Ma, F. J. & Lu, Z.-Y. Iron-based layered compound LaFeAsO is an antiferromagnetic semimetal. Phys. Rev. B 78, 033111 (2008).
Haule, K. & Kotliar, G. Coherence-incoherence crossover in the normal state of iron-oxypnictides and importance of the Hundâs rule coupling. Preprint at <http://arxiv.org/abs/0805.0722v1> (2008).
Tegel, M., Schellenberg, I., Röttgen, R. & Johrendt, D. A 57Fe Mössbauer spectroscopy study of the 7âK superconductor LaFePO. Preprint at <http://arxiv.org/abs/0805.1208> (2008).
McQueen, T. M. et al. Intrinsic properties of stoichiometric LaOFeP. Phys. Rev. B 78, 024521 (2008).
Rotter, M. et al. Spin density wave anomaly at 140 K in the ternary iron arsenide BaFe2As2 . Phys. Rev. B 78, 020503(R) (2008).
Nomura, T. et al. Crystallographic phase transition and high-Tc superconductivity in LaOFeAs:F. Preprint at <http://arxiv.org/abs/0804.3569> (2008).
Kimber, S. A. J. et al. Magnetic ordering and negative thermal expansion in PrFeAsO. Phys. Rev. B 78, 140503 (2008).
Zhao, J. et al. Lattice and magnetic structures of PrFeAsO, PrFeAsO0.85F0.15, and PrFeAsO0.85 . Phys. Rev. B 78, 132504 (2008).
Chen, Y. et al. Magnetic order of the iron spins in NdOFeAs. Phys. Rev. B 78, 064515 (2008).
Dong, J. et al. Competing orders and spin-density-wave instability in LaO1âxFxFeAs. Euro. Phys. Lett. 83, 27006 (2008).
Komura, S., Hamaguchi, Y. & Kunitomi, N. Experimental test of rigid band models for Cr by means of CrâVâMn ternary dilute alloys. J. Phys. Soc. Jpn 23, 171â179 (1967).
Facett, E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 60, 209â283 (1988).
Maier, T. A. & Scalapino, D. J. Neutron scattering as a probe of the Fe-pnicitide superconducting gap. Phys. Rev. B 78, 020514 (2008).
Zhang, C. L. et al. X-ray absorption spectroscopy measurement on the LaO1âxFexFeAs system. Preprint at <http://arxiv.org/abs/0808.2134> (2008).
Wu, J. S., Phillips, P. & Castro Neto, A. H. Theory of the magnetic moment in iron pnictides. Phys. Rev. Lett. 101, 126401 (2008).
Yildirim, T. Origin of the â¼150âK anomaly in LaOFeAs; competing antiferromagnetic superexchange interactions, frustration, and structural phase transition. Phys. Rev. Lett. 101, 057010 (2008).
Kamihara, Y. et al. Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128, 10012â10013 (2006).
Qiu, Y. et al. Structure and magnetic order in the NdFeAsO1âxFx superconductor system. Preprint at <http://arxiv.org/abs/0806.2195v4> (2008).
Tarantini, C et al. Can antiferromagnetism and superconductivity coexist in the high-field paramagnetic superconductor Nd(O,F)FeAs? Preprint at <http://arxiv.org/abs/0805.4445v1> (2008).
Luetkens, H. et al. Electronic phase diagram of the LaO1âxFxFeAs superconductor. Preprint at <http://arxiv.org/abs/0806.3533> (2008).
Margadonna, S. et al. Crystal structure and phase transitions across the metal-superconductor boundary in the SmFeAsO1âxFx (0<x<0.20) family. Preprint at <http://arxiv.org/abs/0806.3962> (2008).
Drew, A. J. et al. Coexistence of static magnetism and superconductivity in SmFeAsO1âxFx as revealed by muon spin rotation. Preprint at <http://arxiv.org/abs/0807.4876> (2008).
Huang, Q. et al. Doping evolution of antiferromagnetic order and structure distortion in LaFeAsO1âxFx . Phys. Rev. B 78, 054529 (2008).
Liu, R. H. et al. Anomalous transport properties and phase diagram of the FeAs based SmFeAsO1âxFx superconductors. Phys. Rev. Lett. 101, 087001 (2008).
Acknowledgements
We thank E. Dagotto, A. Moreo, R. Fishman and T. Maier for helpful discussions. We also thank J. L. Zarestky for his help on the HB-3âmeasurements. This work is supported by the US National Science Foundation through DMR-0756568 and by the US Department of Energy, Division of Materials Science, Basic Energy Sciences, through DOE DE-FG02-05ER46202. This work is also supported in part by the US Department of Energy, Division of Scientific User Facilities, Basic Energy Sciences. The work at the Institute of Physics, Chinese Academy of Sciences, is supported by the National Science Foundation of China, the Chinese Academy of Sciences ITSNEM and the Ministry of Science and Technology of China.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary Information (PDF 43 kb)
Rights and permissions
About this article
Cite this article
Zhao, J., Huang, Q., de la Cruz, C. et al. Structural and magnetic phase diagram of CeFeAsO1â xFx and its relation to high-temperature superconductivity. Nature Mater 7, 953â959 (2008). https://doi.org/10.1038/nmat2315
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2315
This article is cited by
-
An Investigation of Superconducting Properties of Some Alkali Doped (A=Li, Na, K, Rb, Cs) Fe Based Superconductors â A First Principles Study
Journal of Superconductivity and Novel Magnetism (2023)
-
Multiple magnetic orders in LaFeAs1-xPxO uncover universality of iron-pnictide superconductors
Communications Physics (2022)
-
Distinct superconducting behaviors of pressurized WB2 and ReB2 with different local B layers
Science China Physics, Mechanics & Astronomy (2022)
-
Electrical Resistivity and Magnetization Study on LaFe2As2, La0.8Ba0.2Fe2As2, and La1-xBaxPt0.1Fe1.9As2 (x = 0, 0.05, 0.2, 0.4, and 0.6) Superconducting Compounds
Journal of Electronic Materials (2022)
-
Low Field Magnetic and Electric Transport Properties of LaFeAsO and Oxygen Deficiency of LaFeAsOx
Journal of Electronic Materials (2021)