Abstract
Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622â627 (2006).
Oberdorster, G. et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 2, 8 (2005).
Vertegel, A. A., Siegel, R. W. & Dordick, J. S. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20, 6800â6807 (2004).
Sigmund, W., Pyrgiotakis, G. & Daga, A. Chemical Processing of Ceramics (CRC, 2005).
Gilbert, B., Huang, F., Zhang, H., Waychunas, G. A. & Banfield, J. F. Nanoparticles: Strained and stiff. Science 305, 651â654 (2004).
Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nature Mater. 7, 527â538 (2008).
Velegol, D. Assembling colloidal devices by controlling interparticle forces. J. Nanophoton. 1, 012502 (2007).
Baca, H. K. et al. Cell-directed assembly of lipidâsilica nanostructures providing extended cell viability. Science 313, 337â341 (2006).
Dagastine, R. R. et al. Dynamic forces between two deformable oil droplets in water. Science 313, 210â213 (2006).
Kim, H. Y., Sofo, J. O., Velegol, D., Cole, M. W. & Lucas, A. A. Van der Waals dispersion forces between dielectric nanoclusters. Langmuir 23, 1735â1740 (2007).
Feick, J. D., Chukwumah, N., Noel, A. E. & Velegol, D. Altering surface charge nonuniformity on individual colloidal particles. Langmuir 20, 3090â3095 (2004).
Velegol, D. & Thwar, P. K. Analytical model for the effect of surface charge nonuniformity on colloidal interactions. Langmuir 17, 7687â7693 (2001).
Baca, H. K. et al. Cell-directed assembly of bio/nano interfaces: A new scheme for cell immobilization. Acc. Chem. Res. 40, 836â845 (2007).
Dobrovolskaia, M. A. & McNeil, S. E. Immunological properties of engineered nanomaterials. Nature Nanotech. 2, 469â478 (2007).
Swanson, J. A. Shaping cups into phagosomes and macropinosomes. Nature Rev. Mol. Cell Biol. 9, 639â649 (2008).
Chen, H., Langer, R. & Edwards, D. A. A film tension theory of phagocytosis. J. Colloid Interface Sci. 190, 118â133 (1997).
Cedervall, T. et al. Understanding the nanoparticleâprotein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050â2055 (2007).
Linse, S. et al. Nucleation of protein fibrillation by nanoparticles. Proc. Natl Acad. Sci. USA 104, 8691â8696 (2007).
Lundqvist, M. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265â14270 (2008).
Owens, D. E. III & Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93â102 (2006).
Xia, T. et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. Am. Chem. Soc. Nano 2, 2121â2134 (2008).
Rodriguez, C. E., Fukuto, J. M., Taguchi, K., Froines, J. & Cho, A. K. The interactions of 9,10-phenanthrenequinone with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a potential site for toxic actions. Chem. Biol. Interact. 155, 97â110 (2005).
Decuzzi, P. & Ferrari, M. The role of specific and nonspecific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 28, 2915â2922 (2007).
Gao, H., Shi, W. & Freund, L. B. Mechanics of receptor-mediated endocytosis. Proc. Natl Acad. Sci. USA 102, 9469â9474 (2005).
Chithrani, B. D. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662â668 (2006).
Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature Mater. 7, 588â595 (2008).
Fernandez-Carneado, J., Kogan, M. J., Pujals, S. & Giralt, E. Amphipathic peptides and drug delivery. Biopolymers 76, 196â203 (2004).
Leroueil, P. R. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett. 8, 420â424 (2008).
Fleck, C. C. & Netz, R. R. Electrostatic colloid-membrane binding. Europhys. Lett. 67, 314â320 (2004).
Wong-Ekkabut, J. et al. Computer simulation study of fullerene translocation through lipid membranes. Nature Nanotech. 3, 363â368 (2008).
Vonarbourg, A., Passirani, C., Saulnier, P. & Benoit, J. P. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27, 4356â4373 (2006).
Hoek, E. M. & Agarwal, G. K. Extended DLVO interactions between spherical particles and rough surfaces. J. Colloid Interface Sci. 298, 50â58 (2006).
Chithrani, B. D. & Chan, W. C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542â1550 (2007).
Qian, Z. M., Li, H., Sun, H. & Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev. 54, 561â587 (2002).
Gratton, S. E. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105, 11613â11618 (2008).
Poland, C. A. et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotech. 3, 423â428 (2008).
Ferrari, M. Nanogeometry: Beyond drug delivery. Nature Nanotech. 3, 131â132 (2008).
Rejman, J., Oberle, V., Zuhorn, I. S. & Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159â169 (2004).
Sieczkarski, S. B. & Whittaker, G. R. Dissecting virus entry via endocytosis. J. Gen. Virol. 83, 1535â1545 (2002).
Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823â839 (2005).
Sager, T. M. et al. Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1, 118â129 (2007).
Jiang, J., Oberdorster, G. & Biswas, P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 11, 77â89 (2008).
Moreau, J. W. et al. Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 316, 1600â1603 (2007).
Buford, M. C., Hamilton, R. F. Jr & Holian, A. A comparison of dispersing media for various engineered carbon nanoparticles. Part. Fibre Toxicol. 4, 6 (2007).
Dutta, D. et al. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci. 100, 303â315 (2007).
Xia, T., Kovochich, M., Liong, M., Zink, J. I. & Nel, A. E. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. Am. Chem. Soc. Nano 2, 85â96 (2008).
Xia, T. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794â1807 (2006).
Thomas, M. & Klibanov, A. M. Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells. Proc. Natl Acad. Sci. USA 100, 9138â9143 (2003).
Kuschner, W. G. et al. Pulmonary responses to purified zinc oxide fume. J. Invest. Med. 43, 371â378 (1995).
Mercer, R. R. et al. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am. J. Physiol. Lung Cell Mol. Physiol. 294, L87âL97 (2008).
Shvedova, A. A. et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 289, L698âL708 (2005).
Monteiller, C. et al. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: The role of surface area. Occup. Environ. Med. 64, 609â615 (2007).
Warheit, D. B., Webb, T. R., Sayes, C. M., Colvin, V. L. & Reed, K. L. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol. Sci. 91, 227â236 (2006).
Shvedova, A. A. et al. Nanotechnology: Characterization, Dosing and Health Effects (Informa Healthcare, 2007).
Araujo, J. A. et al. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ. Res. 102, 589â596 (2008).
Li, N. et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111, 455â460 (2003).
McNeil, S. E. Nanoparticle therapeutics: A personal perspective. WIREs Nanomed. Nanobiotechnol. 1, 264â271 (2009).
Mortensen, L. J., Oberdorster, G., Pentland, A. P. & Delouise, L. A. In vivo skin penetration of quantum dot nanoparticles in the murine model: The effect of UVR. Nano Lett. 8, 2779â2787 (2008).
Goodman, C. M., McCusker, C. D., Yilmaz, T. & Rotello, V. M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 15, 897â900 (2004).
Hoet, P. H., Gilissen, L. & Nemery, B. Polyanions protect against the in vitro pulmonary toxicity of polycationic paint components associated with the Ardystil syndrome. Toxicol. Appl. Pharmacol. 175, 184â190 (2001).
Lee, W. A. et al. Multicomponent polymer coating to block photocatalytic activity of TiO2 nanoparticles. Chem. Commun. 4815â4817 (2007).
Vevers, W. F. & Jha, A. N. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17, 410â420 (2008).
Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. & Schlager, J. J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 19, 975â983 (2005).
Navarro, E. et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17, 372â386 (2008).
Hauck, T. S., Ghazani, A. A. & Chan, W. C. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4, 153â159 (2008).
Khan, J. A., Pillai, B., Das, T. K., Singh, Y. & Maiti, S. Molecular effects of uptake of gold nanoparticles in HeLa cells. ChemBioChem. 8, 1237â1240 (2007).
Kirchner, C. et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5, 331â338 (2005).
Ovrevik, J., Lag, M., Schwarze, P. & Refsnes, M. p38 and Src-ERK1/2 pathways regulate crystalline silica-induced chemokine release in pulmonary epithelial cells. Toxicol. Sci. 81, 480â490 (2004).
Auffan, M. et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 42, 6730â6735 (2008).
Jain, T. K., Morales, M. A., Sahoo, S. K., Leslie-Pelecky, D. L. & Labhasetwar, V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharmacol. 2, 194â205 (2005).
Laurent, S. et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064â2110 (2008).
Magrez, A. et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett. 6, 1121â1125 (2006).
Carrero-Sanchez, J. C. et al. Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 6, 1609â1616 (2006).
Kagan, V. E. et al. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol. Lett. 165, 88â100 (2006).
Lam, C. W., James, J. T., McCluskey, R. & Hunter, R. L. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126â134 (2004).
Sayes, C. M. et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4, 1881â1887 (2004).
Tansey, W. et al. Synthesis and characterization of branched poly(L-glutamic acid) as a biodegradable drug carrier. J. Control Release 94, 39â51 (2004).
Guo, D. et al. In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells. J. Nanosci. Nanotech. 8, 2301â2307 (2008).
Dey, S. et al. Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al2O3) nanoparticles in mouse skin epithelial cells. Carcinogenesis 29, 1920â1929 (2008).
Oesterling, E. et al. Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol. Lett. 178, 160â166 (2008).
Karlsson, H. L., Cronholm, P., Gustafsson, J. & Moller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 21, 1726â1732 (2008).
Chen, Z. et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 163, 109â120 (2006).
Niemantsverdriet, J. W. Spectroscopy in Catalysis (Wiley-VCH, 2007).
Yu, X., Jin, L. & Zhou, Z. H. 3.88 Ã structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 453, 415â419 (2008).
Baumeister, W. A voyage to the inner space of cells. Protein Sci. 14, 257â269 (2005).
Carragher, B. et al. Rapid routine structure determination of macromolecular assemblies using electron microscopy: Current progress and further challenges. J. Synchrotron. Radiat. 11, 83â85 (2004).
Kaneko, K. et al. Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis. Nano Lett. 7, 421â425 (2007).
Porter, A. E. Direct imaging of single-walled carbon nanotubes in cells. Nature Nanotech. 2, 713â717 (2007).
Lucic, V. et al. Multiscale imaging of neurons grown in culture: from light microscopy to cryo-electron tomography. J. Struct. Biol. 160, 146â156 (2007).
Sartori, A. et al. Correlative microscopy: Bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol. 160, 135â145 (2007).
Steven, A. C. & Baumeister, W. The future is hybrid. J. Struct. Biol. 163, 186â195 (2008).
Heymann, J. A. et al. Site-specific 3D imaging of cells and tissues with a dual beam microscope. J. Struct. Biol. 155, 63â73 (2006).
Marko, M. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nature Methods 4, 215â217 (2007).
Stephens, D. J. & Allan, V. J. Light microscopy techniques for live cell imaging. Science 300, 82â86 (2003).
Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnol. 26, 83â90 (2008).
Keren, S. et al. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl Acad. Sci. USA 105, 5844â5849 (2008).
Liu, Z. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotech. 2, 47â52 (2007).
Kostarelos, K. The long and short of carbon nanotube toxicity. Nature Biotechnol. 26, 774â776 (2008).
Lacerda, L. et al. Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv. Mater. 20, 225â230 (2008).
Acknowledgements
We acknowledge support from the National Science Foundation and the Environmental Protection Agency under Cooperative Agreement Number EF 0830117. Any opinions, findings, conclusions or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the NSF or EPA. This work has not been subjected to an EPA peer and policy review. Support for experimental work was provided by the UC Lead Campus for Nanotoxicology Training and Research, funded by UC TSR&TP, US Public Health Service grants (U19 AI070453, R01 ES016746, and RO1 ES015498) and the US EPA STAR award (RD-83241301) to the Southern California Particle Center. We are grateful for discussions and contributions provided by participants in the Biophysicochemical Interactions of Engineered Nanomaterials Workshop held at UCLA in September 2007. We thank B. Li and J. Hellmers for helping to make one of the figures and S. McNeil for providing Fig. 8.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nel, A., Mädler, L., Velegol, D. et al. Understanding biophysicochemical interactions at the nanoâbio interface. Nature Mater 8, 543â557 (2009). https://doi.org/10.1038/nmat2442
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2442