Abstract
Surface-enhanced Raman scattering (SERS)-based signal amplification and detection methods using plasmonic nanostructures have been widely investigated for imaging and sensing applications. However, SERS-based molecule detection strategies have not been practically useful because there is no straightforward method to synthesize and characterize highly sensitive SERS-active nanostructures with sufficiently high yield and efficiency, which results in an extremely low cross-section area in Raman sensing. Here, we report a high-yield synthetic method for SERS-active goldâsilver coreâshell nanodumbbells, where the gap between two nanoparticles and the Raman-dye position and environment can be engineered on the nanoscale. Atomic-force-microscope-correlated nano-Raman measurements of individual dumbbell structures demonstrate that Raman signals can be repeatedly detected from single-DNA-tethered nanodumbbells. These programmed nanostructure fabrication and single-DNA detection strategies open avenues for the high-yield synthesis of optically active smart nanoparticles and structurally reproducible nanostructure-based single-molecule detection and bioassays.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102â1106 (1997).
Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667â1670 (1997).
Hu, H. et al. Unified treatment of fluorescence and Raman scattering processes near metal surfaces. Phys. Rev. Lett. 93, 243002 (2004).
Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357â366 (2004).
Michaels, A. M., Jiang, J. & Brus, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 104, 11965â11971 (2000).
Shegai, T. O. & Haran, G. Probing the Raman scattering tensors of individual molecules. J. Phys. Chem. B 110, 2459â2461 (2006).
Andersen, P. C., Jacobson, M. L. & Rowlen, K. L. Flashy silver nanoparticles. J. Phys. Chem. B 108, 2148â2153 (2004).
Doering, W. E. & Nie, S. M. Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement. J. Phys. Chem. B 106, 311â317 (2002).
Le Ru, E. C., Meyer, M. & Etchegoin, P. G. Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B 110, 1944â1948 (2006).
Sawai, Y., Takimoto, B., Nabika, H., Ajito, K. & Murakoshi, K. Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering. J. Am. Chem. Soc. 129, 1658â1662 (2007).
Jiang, J., Bosnick, K., Maillard, M. & Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B 107, 9964â9972 (2003).
Dieringer, J. A., Lettan, R. B. II, Scheidt, K. A. & Van Duyne, R. P. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 129, 16249â16256 (2007).
Bosnick, K. A., Jiang, J. & Brus, L. E. Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates. J. Phys. Chem. B 106, 8096â8099 (2002).
RodrÃguez-Lorenzo, L. et al. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 131, 4616â4618 (2009).
Camden, J. P. et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130, 12616â12617 (2008).
Li, W., Camargo, P. H. C., Lu, X. & Xia, Y. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 9, 485â490 (2009).
Etchegoin, P. G. & Le Ru, E. C. A perspective on single molecule SERS: Current status and future challenges. Phys. Chem. Chem. Phys. 10, 6079â6089 (2008).
Qian, X.-M. & Nie, S. M. Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 37, 912â920 (2008).
Fang, Y., Seong, N.-H. & Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321, 388â392 (2008).
Alivisatos, A. P. et al. Organization of ânanocrystal moleculesâ using DNA. Nature 382, 609â611 (1996).
Zhang, J. P., Liu, Y., Ke, Y. G. & Yan, H. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 6, 248â251 (2006).
Deng, Z. X., Tian, Y., Lee, S. H., Ribbe, A. E. & Mao, C. D. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew. Chem. Int. Ed. 44, 3582â3585 (2005).
Pinto, Y. Y. et al. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett. 5, 2399â2402 (2005).
Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607â609 (1996).
Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549â552 (2008).
Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553â556 (2008).
Xiong, H. M., van der Lelie, D. & Gang, O. DNA linker-mediated crystallization of nanocolloids. J. Am. Chem. Soc. 130, 2442â2443 (2008).
Bidault, S., Javier Garcia de Abajo, F. & Polman, A. Plasmon-based nanolenses assembled on a well-defined DNA template. J. Am. Chem. Soc. 130, 2750â2751 (2008).
Zanchet, D. et al. Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings. J. Phys. Chem. 106, 11758â11763 (2002).
Claridge, S. A., Liang, H. W., Basu, S. R., Frechet, J. M. & Alivisatos, A. P. Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications. Nano Lett. 8, 1202â1206 (2008).
Maye, M. M., Nykypanchuk, D., Cuisnier, M., Lelie, D. & Gang, O. Stepwise surface encoding for high-throughput assembly of nanoclusters. Nature Mater. 8, 388â391 (2009).
Lim, D.-K., Kim, I.-J. & Nam, J.-M. DNA-embedded Au/Ag coreâshell nanoparticles. Chem. Commun. 5312â5314 (2008).
Hurst, S. J., Lytton-Jean, A. K. R. & Mirkin, C. A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 78, 8313â8318 (2006).
Loweth, C. J., Caldwell, W. B., Peng, X., Alivisatos, A. P. & Schultz, P. G. DNA-based assembly of gold nanocrystals. Angew. Chem. 38, 1808â1812 (1999).
Moreau, J. W. & Sharp, T. G. A transmission electron microscopy study of silica and kerogen biosignatures in-1.9âGa gunflint microfossils. Astrobiology 4, 196â210 (2004).
Park, S.-J., Lazarides, A. A., Storhoff, J. J., Pesce, L. & Mirkin, C. A. The structural characterization of oligonucleotide-modified gold nanoparticle networks formed by DNA hybridization. J. Phys. Chem. B 108, 12375â12380 (2004).
Liu, M. & Guyot-Sionnest, P. Synthesis and optical characterization of Au/Ag core/shell nanorods. J. Phys. Chem. B 108, 5882â5888 (2004).
Suh, Y. D., Schenter, G. K., Zhu, L. & Lu, H. P. Probing nanoscale surface enhanced Raman-scattering fluctuation dynamics using correlated AFM and confocal ultramicroscopy. Ultramicroscopy 97, 89â102 (2003).
Lee, Y. M., Jeon, K.-S., Suh, Y. D. & Choi, H. C. Silencing of metallic single-walled carbon nanotubes via spontaneous hydrosilylation. Small 5, 1398â1402 (2009).
Faulds, K., Smith, W. E. & Graham, D. Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal. Chem. 76, 412â417 (2004).
Stokes, R. J. et al. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles. Small. 3, 1593â1601 (2007).
Imura, K., Okamoto, H., Hossain, M. K. & Kitajima, M. Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites. Nano Lett. 6, 2173â2176 (2006).
Barhoumi, A., Zhang, D., Tam, F. & Halas, N. J. Surface-enhanced Raman spectroscopy of DNA. J. Am. Chem. Soc. 130, 5523â5525 (2008).
Bell, S. E. J. & Sirimuthu, N. M. S. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J. Am. Chem. Soc. 128, 15580â15581 (2006).
Moskovits, M., Tay, L.-L., Yang, J. & Haslett, T. SERS and the single molecule. Top. Appl. Phys. 82, 215â226 (2002).
Weiss, A. & Haran, G. Time-dependent single-molecule Raman scattering as a probe of surface dynamics. J. Phys. Chem. B 105, 12348â12354 (2001).
Le Ru, E. C., Blakie, E., Meyer, M. & Etchegoin, P. G. Surface enhanced Raman scattering (SERS) enhancement factors; a comprehensive study. J. Phys. Chem. C 111, 13794â13803 (2007).
Yang, Y., Shi, J., Kawamura, G. & Nogami, M. Preparation of AuâAg, AgâAu coreâshell bimetallic nanoparticles for surface-enhanced Raman scattering. Scr. Mater. 58, 862â865 (2008).
Acknowledgements
J.-M.N. was supported by the 21C Frontier Functional Proteomics Project (FPR08-A2-150), the Nano R&D programme (2008-02890) and the Basic Science Research Program (2009-0077361) through the National Research Foundation of Korea (NRF) from the Ministry of Education, Science and Technology. Y.D.S. was supported by KRICT (KK-0904-02), the Nano R&D Program (No. 2009-0082861), the Pioneer Research Center Program of NRF (No. 2009-0081511), the Development of Advanced Scientific Analysis Instrumentation Project of KRISS by MEST and the Eco-technopia 21 Project by KME. We would also like to acknowledge the Industrial Core Technology Development Program by the Ministry of Knowledge Economy (No. 10033183) for financial support.
Author information
Authors and Affiliations
Contributions
Y.D.S. and J.-M.N. conceived the initial idea. J.-M.N. designed synthetic schemes for nanoprobes and D.-K.L. and J.-M.N. synthesized and characterized nanoprobes. Raman spectra and AFM images were obtained by K.-S.J. and D.-K.L. under the supervision of Y.D.S. and J.-M.N. Single-molecule experiments were designed and guided by Y.D.S. and J.-M.N., and carried out by K.-S.J. and D.-K.L. H.M.K. measured and calculated the enhancement factor. J.-M.N., D.-K.L. and Y.D.S. wrote the article with partial contribution from K.-S.J. and H.M.K.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 659 kb)
Rights and permissions
About this article
Cite this article
Lim, DK., Jeon, KS., Kim, H. et al. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Mater 9, 60â67 (2010). https://doi.org/10.1038/nmat2596
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2596
This article is cited by
-
Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials
Light: Science & Applications (2024)
-
Efficient optical plasmonic tweezer-controlled single-molecule SERS characterization of pH-dependent amylin species in aqueous milieus
Nature Communications (2023)
-
Cucurbit[8]uril-mediated SERS plasmonic nanostructures with sub-nanometer gap for the identification and determination of estrogens
Microchimica Acta (2023)
-
Highly sensitive near-infrared SERS nanoprobes for in vivo imaging using gold-assembled silica nanoparticles with controllable nanogaps
Journal of Nanobiotechnology (2022)
-
Three-dimensional nanoframes with dual rims as nanoprobes for biosensing
Nature Communications (2022)