Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection

Abstract

Surface-enhanced Raman scattering (SERS)-based signal amplification and detection methods using plasmonic nanostructures have been widely investigated for imaging and sensing applications. However, SERS-based molecule detection strategies have not been practically useful because there is no straightforward method to synthesize and characterize highly sensitive SERS-active nanostructures with sufficiently high yield and efficiency, which results in an extremely low cross-section area in Raman sensing. Here, we report a high-yield synthetic method for SERS-active gold–silver core–shell nanodumbbells, where the gap between two nanoparticles and the Raman-dye position and environment can be engineered on the nanoscale. Atomic-force-microscope-correlated nano-Raman measurements of individual dumbbell structures demonstrate that Raman signals can be repeatedly detected from single-DNA-tethered nanodumbbells. These programmed nanostructure fabrication and single-DNA detection strategies open avenues for the high-yield synthesis of optically active smart nanoparticles and structurally reproducible nanostructure-based single-molecule detection and bioassays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The high-yield synthetic scheme and nanogap engineering for single-DNA-tethered heterodimeric GSNDs and AFM-correlated nano-Raman spectroscopic measurement of individual GSND particles.
Figure 2: Ultraviolet–visible spectra and HRTEM images of gold monomers, gold heterodimers, gold–silver core–shell monomers and gold–silver core–shell heterodimers.
Figure 3: The AFM-correlated nano-Raman spectroscopic measurements of the synthesized nanoparticles.
Figure 4: AFM-correlated nano-Raman signals from the individual GSNDs with a 5 nm Ag shell on the same surface.
Figure 5: Single-molecule behaviours from the GSND with a 5 nm Ag shell.

Similar content being viewed by others

References

  1. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  2. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  CAS  Google Scholar 

  3. Hu, H. et al. Unified treatment of fluorescence and Raman scattering processes near metal surfaces. Phys. Rev. Lett. 93, 243002 (2004).

    Article  Google Scholar 

  4. Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2004).

    Article  CAS  Google Scholar 

  5. Michaels, A. M., Jiang, J. & Brus, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 104, 11965–11971 (2000).

    Article  CAS  Google Scholar 

  6. Shegai, T. O. & Haran, G. Probing the Raman scattering tensors of individual molecules. J. Phys. Chem. B 110, 2459–2461 (2006).

    Article  CAS  Google Scholar 

  7. Andersen, P. C., Jacobson, M. L. & Rowlen, K. L. Flashy silver nanoparticles. J. Phys. Chem. B 108, 2148–2153 (2004).

    Article  CAS  Google Scholar 

  8. Doering, W. E. & Nie, S. M. Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement. J. Phys. Chem. B 106, 311–317 (2002).

    Article  CAS  Google Scholar 

  9. Le Ru, E. C., Meyer, M. & Etchegoin, P. G. Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B 110, 1944–1948 (2006).

    Article  CAS  Google Scholar 

  10. Sawai, Y., Takimoto, B., Nabika, H., Ajito, K. & Murakoshi, K. Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering. J. Am. Chem. Soc. 129, 1658–1662 (2007).

    Article  CAS  Google Scholar 

  11. Jiang, J., Bosnick, K., Maillard, M. & Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B 107, 9964–9972 (2003).

    Article  CAS  Google Scholar 

  12. Dieringer, J. A., Lettan, R. B. II, Scheidt, K. A. & Van Duyne, R. P. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 129, 16249–16256 (2007).

    Article  CAS  Google Scholar 

  13. Bosnick, K. A., Jiang, J. & Brus, L. E. Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates. J. Phys. Chem. B 106, 8096–8099 (2002).

    Article  CAS  Google Scholar 

  14. Rodríguez-Lorenzo, L. et al. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 131, 4616–4618 (2009).

    Article  Google Scholar 

  15. Camden, J. P. et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130, 12616–12617 (2008).

    Article  CAS  Google Scholar 

  16. Li, W., Camargo, P. H. C., Lu, X. & Xia, Y. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 9, 485–490 (2009).

    Article  CAS  Google Scholar 

  17. Etchegoin, P. G. & Le Ru, E. C. A perspective on single molecule SERS: Current status and future challenges. Phys. Chem. Chem. Phys. 10, 6079–6089 (2008).

    Article  CAS  Google Scholar 

  18. Qian, X.-M. & Nie, S. M. Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 37, 912–920 (2008).

    Article  CAS  Google Scholar 

  19. Fang, Y., Seong, N.-H. & Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321, 388–392 (2008).

    Article  CAS  Google Scholar 

  20. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  21. Zhang, J. P., Liu, Y., Ke, Y. G. & Yan, H. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 6, 248–251 (2006).

    Article  CAS  Google Scholar 

  22. Deng, Z. X., Tian, Y., Lee, S. H., Ribbe, A. E. & Mao, C. D. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew. Chem. Int. Ed. 44, 3582–3585 (2005).

    Article  CAS  Google Scholar 

  23. Pinto, Y. Y. et al. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett. 5, 2399–2402 (2005).

    Article  CAS  Google Scholar 

  24. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  25. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  26. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  27. Xiong, H. M., van der Lelie, D. & Gang, O. DNA linker-mediated crystallization of nanocolloids. J. Am. Chem. Soc. 130, 2442–2443 (2008).

    Article  CAS  Google Scholar 

  28. Bidault, S., Javier Garcia de Abajo, F. & Polman, A. Plasmon-based nanolenses assembled on a well-defined DNA template. J. Am. Chem. Soc. 130, 2750–2751 (2008).

    Article  CAS  Google Scholar 

  29. Zanchet, D. et al. Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings. J. Phys. Chem. 106, 11758–11763 (2002).

    Article  CAS  Google Scholar 

  30. Claridge, S. A., Liang, H. W., Basu, S. R., Frechet, J. M. & Alivisatos, A. P. Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications. Nano Lett. 8, 1202–1206 (2008).

    Article  CAS  Google Scholar 

  31. Maye, M. M., Nykypanchuk, D., Cuisnier, M., Lelie, D. & Gang, O. Stepwise surface encoding for high-throughput assembly of nanoclusters. Nature Mater. 8, 388–391 (2009).

    Article  CAS  Google Scholar 

  32. Lim, D.-K., Kim, I.-J. & Nam, J.-M. DNA-embedded Au/Ag core–shell nanoparticles. Chem. Commun. 5312–5314 (2008).

  33. Hurst, S. J., Lytton-Jean, A. K. R. & Mirkin, C. A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 78, 8313–8318 (2006).

    Article  CAS  Google Scholar 

  34. Loweth, C. J., Caldwell, W. B., Peng, X., Alivisatos, A. P. & Schultz, P. G. DNA-based assembly of gold nanocrystals. Angew. Chem. 38, 1808–1812 (1999).

    Article  CAS  Google Scholar 

  35. Moreau, J. W. & Sharp, T. G. A transmission electron microscopy study of silica and kerogen biosignatures in-1.9 Ga gunflint microfossils. Astrobiology 4, 196–210 (2004).

    Article  CAS  Google Scholar 

  36. Park, S.-J., Lazarides, A. A., Storhoff, J. J., Pesce, L. & Mirkin, C. A. The structural characterization of oligonucleotide-modified gold nanoparticle networks formed by DNA hybridization. J. Phys. Chem. B 108, 12375–12380 (2004).

    Article  CAS  Google Scholar 

  37. Liu, M. & Guyot-Sionnest, P. Synthesis and optical characterization of Au/Ag core/shell nanorods. J. Phys. Chem. B 108, 5882–5888 (2004).

    Article  CAS  Google Scholar 

  38. Suh, Y. D., Schenter, G. K., Zhu, L. & Lu, H. P. Probing nanoscale surface enhanced Raman-scattering fluctuation dynamics using correlated AFM and confocal ultramicroscopy. Ultramicroscopy 97, 89–102 (2003).

    Article  CAS  Google Scholar 

  39. Lee, Y. M., Jeon, K.-S., Suh, Y. D. & Choi, H. C. Silencing of metallic single-walled carbon nanotubes via spontaneous hydrosilylation. Small 5, 1398–1402 (2009).

    Article  CAS  Google Scholar 

  40. Faulds, K., Smith, W. E. & Graham, D. Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal. Chem. 76, 412–417 (2004).

    Article  CAS  Google Scholar 

  41. Stokes, R. J. et al. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles. Small. 3, 1593–1601 (2007).

    Article  CAS  Google Scholar 

  42. Imura, K., Okamoto, H., Hossain, M. K. & Kitajima, M. Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites. Nano Lett. 6, 2173–2176 (2006).

    Article  CAS  Google Scholar 

  43. Barhoumi, A., Zhang, D., Tam, F. & Halas, N. J. Surface-enhanced Raman spectroscopy of DNA. J. Am. Chem. Soc. 130, 5523–5525 (2008).

    Article  CAS  Google Scholar 

  44. Bell, S. E. J. & Sirimuthu, N. M. S. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J. Am. Chem. Soc. 128, 15580–15581 (2006).

    Article  CAS  Google Scholar 

  45. Moskovits, M., Tay, L.-L., Yang, J. & Haslett, T. SERS and the single molecule. Top. Appl. Phys. 82, 215–226 (2002).

    Article  CAS  Google Scholar 

  46. Weiss, A. & Haran, G. Time-dependent single-molecule Raman scattering as a probe of surface dynamics. J. Phys. Chem. B 105, 12348–12354 (2001).

    Article  CAS  Google Scholar 

  47. Le Ru, E. C., Blakie, E., Meyer, M. & Etchegoin, P. G. Surface enhanced Raman scattering (SERS) enhancement factors; a comprehensive study. J. Phys. Chem. C 111, 13794–13803 (2007).

    Article  CAS  Google Scholar 

  48. Yang, Y., Shi, J., Kawamura, G. & Nogami, M. Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scr. Mater. 58, 862–865 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.-M.N. was supported by the 21C Frontier Functional Proteomics Project (FPR08-A2-150), the Nano R&D programme (2008-02890) and the Basic Science Research Program (2009-0077361) through the National Research Foundation of Korea (NRF) from the Ministry of Education, Science and Technology. Y.D.S. was supported by KRICT (KK-0904-02), the Nano R&D Program (No. 2009-0082861), the Pioneer Research Center Program of NRF (No. 2009-0081511), the Development of Advanced Scientific Analysis Instrumentation Project of KRISS by MEST and the Eco-technopia 21 Project by KME. We would also like to acknowledge the Industrial Core Technology Development Program by the Ministry of Knowledge Economy (No. 10033183) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Y.D.S. and J.-M.N. conceived the initial idea. J.-M.N. designed synthetic schemes for nanoprobes and D.-K.L. and J.-M.N. synthesized and characterized nanoprobes. Raman spectra and AFM images were obtained by K.-S.J. and D.-K.L. under the supervision of Y.D.S. and J.-M.N. Single-molecule experiments were designed and guided by Y.D.S. and J.-M.N., and carried out by K.-S.J. and D.-K.L. H.M.K. measured and calculated the enhancement factor. J.-M.N., D.-K.L. and Y.D.S. wrote the article with partial contribution from K.-S.J. and H.M.K.

Corresponding authors

Correspondence to Jwa-Min Nam or Yung Doug Suh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 659 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, DK., Jeon, KS., Kim, H. et al. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Mater 9, 60–67 (2010). https://doi.org/10.1038/nmat2596

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2596

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing