Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Supramolecular spin valves

Abstract

Magnetic molecules are potential building blocks for the design of spintronic devices1,2. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication3. The development of solid-state spintronic devices based on the giant magnetoresistance4, tunnel magnetoresistance5 and spin-valve effects6 has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions7,8, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance9,10 and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed2. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc2 single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Supramolecular spin-valve device.
Figure 2: Molecular spin-valve electronic-transport characteristics.
Figure 3: Molecular spin-valve switching-field characteristics.

Similar content being viewed by others

References

  1. Rocha, A. R. et al. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).

    Article  CAS  Google Scholar 

  2. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  CAS  Google Scholar 

  3. Lehn, J-M. Supramolecular chemistry: From molecular information toward self-organization and complex matter. Rep. Prog. Phys. 67, 249–265 (2004).

    Article  Google Scholar 

  4. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  CAS  Google Scholar 

  5. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in Fe–Cr layered structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  CAS  Google Scholar 

  6. Dieny, B. Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B 43, 1297–1300 (1991).

    Article  CAS  Google Scholar 

  7. Awschalom, D. D. & Flatté, M. M. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  8. Dediu, V., Hueso, L., Bergenti, I. & Taliani, C. Spin routes in organic semiconductors. Nature Mater. 8, 707–716 (2009).

    Article  CAS  Google Scholar 

  9. Brede, J. et al. Spin- and energy-dependent tunnelling through a single molecule with intramolecular spatial resolution. Phys. Rev. Lett. 105, 047204 (2010).

    Article  Google Scholar 

  10. Schmaus, S. et al. Giant magnetoresistance through a single molecule. Nature Nanotech. 6, 185–189 (2011).

    Article  CAS  Google Scholar 

  11. Sahoo, S. et al. Electric field control of spin transport. Nature Phys. 1, 99–102 (2005).

    Article  CAS  Google Scholar 

  12. Aurich, H. et al. Permalloy-based carbon nanotube spin-valve. Appl. Phys. Lett. 97, 153116 (2010).

    Article  Google Scholar 

  13. Hueso, L. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).

    Article  CAS  Google Scholar 

  14. Ishikawa, N. et al. Upward temperature shift of the intrinsic phase lag of the magnetization of bis(phthalocyaninato)terbium by ligand oxidation creating an S=1/2 spin. Inorg. Chem. 43, 5498–5500 (2004).

    Article  CAS  Google Scholar 

  15. Stepanow, S. et al. Spin and orbital magnetic moment anisotropies of monodispersed bis(phthalocyaninato) terbium on a copper surface. J. Am. Chem. Soc. 132, 11900–11901 (2010).

    Article  CAS  Google Scholar 

  16. Ishikawa, N., Sugita, M. & Wernsdorfer, W. Quantum tunnelling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew. Chem. Int. Edn. 44, 2931–2935 (2005).

    Article  CAS  Google Scholar 

  17. Christou, G., Gatteschi, D., Hendrickson, D. N. & Sessoli, R. Single-molecule magnets. MRS Bull. 25, 66–71 (2000).

    Article  CAS  Google Scholar 

  18. Wernsdorfer, W. & Sessoli, R. Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999).

    Article  CAS  Google Scholar 

  19. Wernsdorfer, W. From micro- to nano-SQUIDs: Applications to nanomagnetism. Supercond. Sci. Technol. 22, 064013 (2009).

    Article  Google Scholar 

  20. Ishikawa, N. et al. Determination of ligand-Field parameters and f electronic structures of double-decker bis(phthalocyaninato)lanthanide complexes. Inorg. Chem. 42, 2440–2446 (2003).

    Article  CAS  Google Scholar 

  21. Zopellaro, G. et al. Spin dynamics in the negatively charged terbium (III) bis phthalocyaninato complex. J. Am. Chem. Soc. 131, 4387–4396 (2009).

    Article  Google Scholar 

  22. Klyatskaya, S. et al. Anchoring of rare-earth-based single-molecule magnets on single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 15143–15151 (2009).

    Article  Google Scholar 

  23. Lopes, M. et al. Surface-enhanced Raman signal for terbium single-molecule magnets grafted on graphene. ACS Nano 4, 7531–7537 (2010).

    Article  CAS  Google Scholar 

  24. Wang, Y. Y. et al. Single-walled carbon nanotube/cobalt phthalocyanine derivative hybrid material: Preparation, characterization and its gas sensing properties. J. Mater. Chem. 21, 3779–3787 (2011).

    Article  CAS  Google Scholar 

  25. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  CAS  Google Scholar 

  26. Sapmaz, S., Jarillo-Herrero, P., Kouwenhoven, L. P. & van der Zant, H. S. J. Quantum dots in carbon nanotubes. Semicond. Sci. Technol. 21, S52–S63 (2006).

    Article  CAS  Google Scholar 

  27. Otero, L. M., Caneschi, A. & Sessoli, R. X-Ray detected magnetic hysteresis of thermally evaporated terbium double-decker oriented films. Adv. Mater. 42, 5488–5493 (2010).

    Google Scholar 

  28. Katoh, K. et al. Direct observation of lanthanide(III)-phthalocyanine molecules on Au(111) by using scanning tunnelling microscopy and scanning tunnelling spectroscopy and thin-film field-effect transistor properties of Tb(III)- and Dy(III)-phthalocyanine molecules. J. Am. Chem. Soc. 131, 9967–9971 (2009).

    Article  CAS  Google Scholar 

  29. Gopakumar, T. G., Müller, F. & Hietschold, M. STM and STS studies of planar and non-planar naphthalocyanines on graphite I & II. J. Phys. Chem. B 110, 6051–6060 (2006).

    Article  CAS  Google Scholar 

  30. Vitali, L. et al. Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets. Nano Lett. 8, 3364–3368 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the DFG programmes SPP 1459 and TRR 88, ANR-PNANO project MolNanoSpin No ANR-08-NANO-002, ERC Advanced Grant MolNanoSpin No 226558, STEP MolSpinQIP and the Nanosciences Foundation of Grenoble. Samples were fabricated in the NANOFAB facility of the Néel Institute. We thank M. Affronte, F. Balestro, N. Bendiab, L. Bogani, E. Bonet, V. Bouchiat, L. Calvet, A. Candini, D. Feinberg, J. Jarvinen, L. Marty, T. Novotny, R. Piquerel, C. Thirion and R. Vincent for discussion and software development. We thank D. Lepoittevin, E. Eyraud, R. Haettel, C. Hoarau and V. Reita for technical support. We thank N-V. Nguyen and T. Crozes for help in device fabrication.

Author information

Authors and Affiliations

Authors

Contributions

M.U., M.R. and W.W. designed, carried out and analysed the experiments; J-P.C. helped to fabricate the devices; S.K. and M.R. designed, synthesized and characterized the molecule; M.U., M.R. and W.W. co-wrote the paper.

Corresponding authors

Correspondence to M. Ruben or W. Wernsdorfer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urdampilleta, M., Klyatskaya, S., Cleuziou, JP. et al. Supramolecular spin valves. Nature Mater 10, 502–506 (2011). https://doi.org/10.1038/nmat3050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing