Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo

Abstract

Ultrafast laser techniques have revealed extraordinary spin dynamics in magnetic materials1,2,3,4,5,6 that equilibrium descriptions of magnetism7 cannot explain. Particularly important for future applications is understanding non-equilibrium spin dynamics following laser excitation on the nanoscale, yet the limited spatial resolution of optical laser techniques has impeded such nanoscale studies. Here we present ultrafast diffraction experiments with an X-ray laser that probes the nanoscale spin dynamics following optical laser excitation in the ferrimagnetic alloy GdFeCo, which exhibits macroscopic all-optical switching4,8,9. Our study reveals that GdFeCo displays nanoscale chemical and magnetic inhomogeneities that affect the spin dynamics. In particular, we observe Gd spin reversal in Gd-rich nanoregions within the first picosecond driven by the non-local transfer of angular momentum from larger adjacent Fe-rich nanoregions. These results suggest that a magnetic material’s microstructure can be engineered to control transient laser-excited spins, potentially allowing faster (~ 1 ps) spin reversal than in present technologies10,11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measured chemical and spin inhomogeneity in GdFeCo.
Figure 2: Nanoscale variations in charge and spin distributions drive q-dependent magnetic scattering dynamics.
Figure 3: Reversal of Gd spins within nanoscale Gd-rich regions as measured by resonant X-ray diffraction

Similar content being viewed by others

References

  1. Beaurepaire, E., Merle, J-C., Daunois, A. & Bigot, J-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  CAS  Google Scholar 

  2. Bigot, J-Y., Vomir, M. & Beaurepaire, E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nature Phys. 5, 515–520 (2009).

    Article  CAS  Google Scholar 

  3. Ju, G. et al. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 93, 197403 (2004).

    Article  Google Scholar 

  4. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  CAS  Google Scholar 

  5. Kirilyuk, A., Kimel, A. & Rasing, Th. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  Google Scholar 

  6. Guidoni, L., Beaurepaire, E. & Bigot, J-Y. Magneto-optics in the ultrafast regime: Thermalization of spin populations in ferromagnetic films. Phys. Rev. Lett. 89, 17401 (2002).

    Article  Google Scholar 

  7. Stöhr, J. & Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, 2006).

    Google Scholar 

  8. Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).

    Article  CAS  Google Scholar 

  9. Ostler, T. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nature Commun. 3, 666 (2012).

    Article  CAS  Google Scholar 

  10. Back, C. H. et al. Minimum field strength in precessional magnetization reversal. Science 285, 864–867 (1999).

    Article  CAS  Google Scholar 

  11. Acremann, Y. et al. Time-resolved imaging of spin transfer switching: Beyond the macrospin concept. Phys. Rev. Lett. 96, 217202 (2006).

    Article  CAS  Google Scholar 

  12. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  13. Koopmans, B., Van Kampen, M., Kohlhepp, J. T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: Magnetism or optics? Phys. Rev. Lett. 85, 844–847 (2000).

    Article  CAS  Google Scholar 

  14. Stamm, C. et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nature Mater. 6, 740–743 (2007).

    Article  CAS  Google Scholar 

  15. Wietstruk, M. et al. Hot-electron-driven enhancement of spin-lattice coupling in Gd and Tb 4f ferromagnets observed by femtosecond X-ray magnetic circular dichroism. Phys. Rev. Lett. 106, 127401 (2011).

    Article  Google Scholar 

  16. Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nature Mater. 9, 259–265 (2010).

    Article  CAS  Google Scholar 

  17. Mentink, J. H. et al. Ultrafast spin dynamics in multisublattice magnets. Phys. Rev. Lett. 108, 057202 (2012).

    Article  CAS  Google Scholar 

  18. Battiato, M., Carva, K. & Oppeneer, P. M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 105, 027203 (2010).

    Article  CAS  Google Scholar 

  19. Melnikov, A. et al. Ultrafast transport of laser-excited spin-polarized carriers in Au/Fe/MgO(001). Phys. Rev. Lett. 107, 076601 (2011).

    Article  Google Scholar 

  20. Malinowski, G. et al. Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum. Nature Phys. 4, 855–888 (2008).

    Article  CAS  Google Scholar 

  21. Battiato, M., Carva, K. & Oppeneer, P. M. Theory of laser-induced ultrafast superdiffusive spin transport in layered heterostructures. Phys. Rev. B 86, 024404 (2012).

    Article  Google Scholar 

  22. Rudolf, D. et al. Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current. Nature Commun. 3, 1037 (2012).

    Google Scholar 

  23. Vodungbo, B. et al. Laser-induced ultrafast demagnetization in the presence of a nanoscale magnetic domain network. Nature Commun. 3, 999 (2012).

    Article  Google Scholar 

  24. Pfau, B. et al. Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls. Nature Commun. 3, 1100 (2012).

    Article  CAS  Google Scholar 

  25. Gutt, C. et al. Single-pulse resonant magnetic scattering using a soft X-ray free-electron laser. Phys. Rev. B 81, 100401 (2010).

    Article  Google Scholar 

  26. Hannon, J. P., Trammell, G. T., Blume, M. & Gibbs, D. X-ray resonance exchange scattering. Phys. Rev. Lett. 61, 1245–1248 (1988).

    Article  CAS  Google Scholar 

  27. Rhie, H-S., Dürr, H. A. & Eberhardt, W. Femtosecond electron and spin dynamics in Ni/W(110) films. Phys. Rev. Lett. 90, 247201 (2003).

    Article  Google Scholar 

  28. Stiles, M. D. & Zangwill, A. Anatomy of spin-transfer torque. Phys. Rev. B 66, 014407 (2002).

    Article  Google Scholar 

  29. Bass, J. & Pratt, W. P. Spin diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: An experimentalist’s critical review. J. Phys. Condens. Matter 19, 183201 (2007).

    Article  Google Scholar 

  30. Zuo, J-K., Wendelken, J. F., Dürr, H. & Liu, C-L. Growth and coalescence in submonolayer homoepitaxy on Cu(100) studied with high-resolution low-energy electron diffraction. Phys. Rev. Lett. 72, 3064–3067 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research at Stanford is supported by US DOE, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC02-76SF00515. Portions of this research were carried out on the SXR Instrument at the Linac Coherent Light Source (LCLS), a division of SLAC National Accelerator Laboratory and an Office of Science user facility operated by Stanford University for the US Department of Energy. The SXR Instrument is funded by a consortium whose membership includes the LCLS, Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES), Lawrence Berkeley National Laboratory (LBNL), University of Hamburg through the BMBF priority program FSP 301, and the Center for Free Electron Laser Science (CFEL). In addition, other portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University. C.E.G. is a NSF Graduate Research Fellow. This work was also supported by the European Community’s Seventh Framework Programme FP7/2007-2013 (grants NMP3-SL-2008-214469 (UltraMagnetron) and 214810 (FANTOMAS)), the European Research Council ERC Grant agreement No. 257280 (Femtomagnetism), the Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO), the Nihon University Strategic Projects for Academic Research, the DFG grant SFB925, the Excellence cluster ‘Frontiers in Quantum Photon Science’ and the Max Planck Society through development and operation of the pn-CCD cameras at CFEL. We are grateful to A. Marshall for assistance and discussion on STEM–EDX measurements.

Author information

Authors and Affiliations

Authors

Contributions

I.R., A.V.K., A.K., Th.R., W.F.S., A.O.S, J.S. and H.A.D. designed and coordinated the project; C.E.G., A.H.R., B.W., T.W., S.d.J., K.V., I.R., D.P.B., M.M., L.M., A.F., Y.A., H.A.D. and A.O.S. performed the X-ray diffraction measurements; W.F.S. and J.J.T. operated the SXR beamline; R.C. and M.B. operated the pump laser and synchronization; S.W.E., R.H., A.H., N.K., D.R. G.H., P.H., H.G., H.S. and L.S. provided and operated the pn-CCD detector; T.W. performed the STEM measurements; C.E.G., A.H.R., S.d.J., H.A.D and A.O.S. performed the data analysis; A.H.R. developed the chemical distribution model; A.T. grew and optimized the samples; H.A.D., C.E.G. and A.H.R. coordinated work on the paper with contributions from A.O.S., J.S., Th.R., A.V.K., A.K. and J.H.M. and discussions with all authors.

Corresponding author

Correspondence to H. A. Dürr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graves, C., Reid, A., Wang, T. et al. Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. Nature Mater 12, 293–298 (2013). https://doi.org/10.1038/nmat3597

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3597

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing