Abstract
Harnessing the optical properties of noble metals down to the nanometre scale is a key step towards fast and low-dissipative information processing. At the 10-nm length scale, metal crystallinity and patterning as well as probing of surface plasmon properties must be controlled with a challenging high level of precision. Here, we demonstrate that ultimate lateral confinement and delocalization of surface plasmon modes are simultaneously achieved in extended self-assembled networks comprising linear chains of partially fused gold nanoparticles. The spectral and spatial distributions of the surface plasmon modes associated with the colloidal superstructures are evidenced by performing monochromated electron energy-loss spectroscopy with a nanometre-sized electron probe. We prepare the metallic bead strings by electron-beam-induced interparticle fusion of nanoparticle networks. The fused superstructures retain the native morphology and crystallinity but develop very low-energy surface plasmon modes that are capable of supporting long-range and spectrally tunable propagation in nanoscale waveguides.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824â830 (2003).
Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193â204 (2010).
Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508â511 (2006).
Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005).
Ouyang, F., Batson, P. E. & Isaacson, M. Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 46, 15421â15425 (1992).
Tan, S. F. et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496â1499 (2014).
Rossouw, D. & Botton, G. A. Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding. Phys. Rev. Lett. 110, 066801 (2013).
Gu, L. et al. Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets. Phys. Rev. B 83, 195433 (2011).
Viarbitskaya, S. et al. Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms. Nature Mater. 12, 426â432 (2013).
Bosman, M. et al. Surface plasmon damping quantified with an electron nanoprobe. Sci. Rep. 3, 1312 (2013).
Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229â232 (2003).
Halas, N. J., Lal, S., Chang, W. S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913â3961 (2011).
Chang, W-S. et al. Low absorption losses of strongly coupled surface plasmons in nanoparticle assemblies. Proc. Natl Acad. Sci. USA 108, 19879â19884 (2011).
Lin, S., Li, M., Dujardin, E., Girard, C. & Mann, S. One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks. Adv. Mater. 17, 2553â2559 (2005).
Barrow, S. J., Funston, A. M., Gomez, D. E., Davis, T. J. & Mulvaney, P. Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer. Nano Lett. 11, 4180â4187 (2011).
Cheng, W. L. et al. Free-standing nanoparticle superlattice sheets controlled by DNA. Nature Mater. 8, 519â525 (2009).
Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135â1138 (2010).
Henzie, J., Andrews, S. C., Ling, X. Y., Li, Z. Y. & Yang, P. D. Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc. Natl Acad. Sci. USA 110, 6640â6645 (2013).
Duan, H., Fernandez-Dominguez, A. I., Bosman, M., Maier, S. A. & Yang, J. K. W. Nanoplasmonics: Classical down to the nanometer scale. Nano Lett. 12, 1683â1689 (2012).
Alber, I. et al. Multipole surface plasmon resonances in conductively coupled metal nanowire dimers. ACS Nano 6, 9711â9717 (2012).
Girard, C., Dujardin, E., Marty, R., Arbouet, A. & Colas des Francs, G. Manipulating and squeezing the photon local density of states with plasmonic nanoparticle networks. Phys. Rev. B 81, 153412 (2010).
Batson, P. E. Surface plasmon coupling in clusters of small spheres. Phys. Rev. Lett. 49, 936â940 (1982).
Ugarte, D., Colliex, C. & Trebbia, P. Surface-plasmon and interface-plasmon modes on small semiconducting spheres. Phys. Rev. B 45, 4332â4343 (1992).
Bosman, M., Keast, V. J., Watanabe, M., Maaroof, A. I. & Cortie, M. B. Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007).
Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys. 3, 348â353 (2007).
Schmidt, F. P. et al. Dark plasmonic breathing modes in silver nanodisks. Nano Lett. 12, 5780â5783 (2012).
Wei, H., Wang, Z., Tian, X., Kall, M. & Xu, H. Cascaded logic gates in nanophotonic plasmon networks. Nature Commun. 2, 387 (2011).
Xu, S. Y. et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small 1, 1221â1229 (2005).
Garnett, E. C. et al. Self-limited plasmonic welding of silver nanowire junctions. Nature Mater. 11, 241â249 (2012).
Bosman, M. & Keast, V. J. Optimizing EELS acquisition. Ultramicroscopy 108, 837â846 (2008).
Imura, K., Nagahara, T. & Okamoto, H. Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J. Phys. Chem. B 109, 13214â13220 (2005).
De Abajo, F. J. G. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008).
Link, S., Mohamed, M. B. & El-Sayed, M. A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103, 3073â3077 (1999).
Colas des Francs, G. et al. Fluorescence relaxation in the near-field of a mesoscopic metallic particle: Distance dependence and role of plasmon modes. Opt. Express 16, 17654â17666 (2008).
Michaelis, J., Hettich, C., Mlynek, J. & Sandoghdar, V. Optical microscopy using a single-molecule light source. Nature 405, 325â328 (2000).
Pyayt, A. L., Wiley, B., Xia, Y. N., Chen, A. & Dalton, L. Integration of photonic and silver nanowire plasmonic waveguides. Nature Nanotech. 3, 660â665 (2008).
Bharadwaj, P., Bouhelier, A. & Novotny, L. Electrical excitation of surface plasmons. Phys. Rev. Lett. 106, 226802 (2011).
Lutz, T. et al. Molecular orbital gates for plasmon excitation. Nano Lett. 13, 2846â2850 (2013).
Jaegeler-Hoheisel, T. et al. Plasmonic shaping in gold nanoparticle three-dimensional assemblies. J. Phys. Chem. C 117, 23126â23132 (2013).
Eliseeva, S. V. & Bunzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189â227 (2010).
Toninelli, C. et al. Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature. Opt. Express 18, 6577â6582 (2010).
Brar, V. W., Jang, M. S., Sherrott, M., Lopez, J. J. & Atwater, H. A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541â2547 (2013).
Yan, H. G. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photonics 7, 394â399 (2013).
Sanchot, A. et al. Plasmonic nanoparticle networks for light and heat concentration. ACS Nano 6, 3434â3440 (2012).
Scholl, J. A., Garcia-Etxarri, A., Koh, A. L. & Dionne, J. A. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13, 564â569 (2013).
Ciraci, C. et al. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072â1074 (2012).
Chen, C., Bobisch, C. A. & Ho, W. Visualization of Fermiâs Golden Rule through imaging of light emission from atomic silver chains. Science 325, 981â985 (2009).
Li, M., Johnson, S., Guo, H. T., Dujardin, E. & Mann, S. A generalized mechanism for ligand-induced dipolar assembly of plasmonic gold nanoparticle chain networks. Adv. Funct. Mater. 21, 851â859 (2011).
Martin, O. J. F., Girard, C. & Dereux, A. Generalized field propagator for electromagnetic scattering and light confinement. Phys. Rev. Lett. 74, 526â529 (1995).
Acknowledgements
The authors thank A. Mlayah and A. Arbouet for continuous and fruitful discussions. This work was supported by the European Research Council (ERC; contract number ERCâ2007-StG Nr 203872 COMOSYEL), and the massively parallel computing center CALMIP in Toulouse. A.T. thanks the LabEx project NEXT (Programme Investissements dâAvenir, contract ANR-10-LABX-0037-NEXT) for a travel grant to IMRE. The authors thank M. Nunez for technical assistance in TEMÂ imaging.
Author information
Authors and Affiliations
Contributions
E.D., M.B., C.G. and S.M. conceived the experiments. K.L.G. and M.L. synthesized the nanoparticles and A.T. and M.L. prepared PNN suspension and TEM samples. M.B. performed and processed EELS experiments. C.G. and A.T. developed the model and implemented the simulation codes. A.T., M.B., C.G. and E.D. performed data and simulation analysis and prepared the figures. All co-authors contributed to the writing of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 5699 kb)
Supplementary Information
Supplementary Movie 1 (AVI 24957 kb)
Rights and permissions
About this article
Cite this article
Teulle, A., Bosman, M., Girard, C. et al. Multimodal plasmonics in fused colloidal networks. Nature Mater 14, 87â94 (2015). https://doi.org/10.1038/nmat4114
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat4114
This article is cited by
-
Nanoscale topographical control of capillary assembly of nanoparticles
Nature Nanotechnology (2017)
-
A halogen-free synthesis of gold nanoparticles using gold(III) oxide
Journal of Nanoparticle Research (2016)
-
Modal engineering of Surface Plasmons in apertured Au Nanoprisms
Scientific Reports (2015)