Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Photochemical transformations on plasmonic metal nanoparticles

An Erratum to this article was published on 23 June 2015

This article has been updated

Abstract

The strong interaction of electromagnetic fields with plasmonic nanomaterials offers opportunities in various technologies that take advantage of photophysical processes amplified by this light–matter interaction. Recently, it has been shown that in addition to photophysical processes, optically excited plasmonic nanoparticles can also activate chemical transformations directly on their surfaces. This potentially offers a number of opportunities in the field of selective chemical synthesis. In this Review we summarize recent progress in the field of photochemical catalysis on plasmonic metallic nanostructures. We discuss the underlying physical mechanisms responsible for the observed chemical activity, and the issues that must be better understood to see progress in the field of plasmon-mediated photocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of phonon- and electron-driven reactions on metals.
Figure 2: Characteristics of plasmonic metallic nanoparticles.
Figure 3: Time evolution of electronic excitation in metals.
Figure 4: Examples of electron-triggered chemical transformations.
Figure 5: Indirect and direct charge-transfer mechanisms.
Figure 6: Direct charge transfer modelled using time-dependent density functional theory.
Figure 7: Light-induced switching of the oxidation states of copper nanoparticles.

Similar content being viewed by others

Change history

  • 20 May 2015

    In the print version of this Review Article the symbols at the two ends of the x axis in Fig. 6a did not render correctly; they should have been Г. These are correct in the online versions of the Review Article.

References

  1. Ertl, G., Knözinger, H. & Weitkamp, J. Handbook of Heterogeneous Catalysis (Wiley, 1997).

    Google Scholar 

  2. Gadzuk, J. W. Vibrational excitation in molecule–surface collisions due to temporary negative molecular ion formation. J. Chem. Phys. 79, 6341–6348 (1983).

    CAS  Google Scholar 

  3. Zhou, X.-L., Zhu, X.-Y. & White, J. M. Photochemistry at adsorbate/metal interfaces. Surf. Sci. Rep. 13, 73–220 (1991).

    CAS  Google Scholar 

  4. Funk, S. et al. Desorption of CO from Ru(001) induced by near-infrared femtosecond laser pulses. J. Chem. Phys. 112, 9888–9897 (2000).

    CAS  Google Scholar 

  5. Denzler, D., Frischkorn, C., Hess, C., Wolf, M. & Ertl, G. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett. 91, 226102 (2003).

    CAS  Google Scholar 

  6. Prybyla, J. A., Heinz, T. F., Misewich, J. A., Loy, M. M. T. & Glownia, J. H. Desorption induced by femtosecond laser pulses. Phys. Rev. Lett. 64, 1537–1540 (1990).

    CAS  Google Scholar 

  7. Bartels, L. et al. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 80, 2004–2007 (1998).

    CAS  Google Scholar 

  8. Ho, W. Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons, and heating. J. Phys. Chem. 100, 13050–13060 (1996).

    CAS  Google Scholar 

  9. Prybyla, J. A., Tom, H. W. K. & Aumiller, G. D. Femtosecond time-resolved surface reaction: Desorption of Co from Cu(111) in <325 fsec. Phys. Rev. Lett. 68, 503–506 (1992).

    CAS  Google Scholar 

  10. Olsen, T., Gavnholt, J. & Schiøtz, J. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces. Phys. Rev. B 79, 035403 (2009).

    Google Scholar 

  11. Busch, D. G. & Ho, W. Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry. Phys. Rev. Lett. 77, 1338–1341 (1996).

    Article  CAS  Google Scholar 

  12. Bonn, M. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999).

    CAS  Google Scholar 

  13. Frischkorn, C. Microscopic understanding of an ultrafast photochemical surface reaction: Hads + Hads → H2, gas on Ru(0 0 1). Surf. Sci. 593, 67–78 (2005).

    CAS  Google Scholar 

  14. Anderson, P. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961).

    CAS  Google Scholar 

  15. Muscat, J. P. & Newns, D. M. Chemisorption on metals. Prog. Surf. Sci. 9, 1–43 (1978).

    CAS  Google Scholar 

  16. Gavnholt, J., Olsen, T., Engelund, M. & Schiøtz, J. Δ self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces. Phys. Rev. B 78, 075441 (2008).

    Google Scholar 

  17. Wingreen, N. S. & Wilkins, J. W. Inelastic scattering in resonant tunneling. Phys. Rev. B 40, 11834–11850 (1989).

    CAS  Google Scholar 

  18. Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chem. 3, 467–472 (2011).

    CAS  Google Scholar 

  19. Qiu, J. & Wei, W. D. Surface plasmon-mediated photothermal chemistry. J. Phys. Chem. C 118, 20735–20749 (2014).

    CAS  Google Scholar 

  20. Adleman, J. R., Boyd, D. A., Goodwin, D. G. & Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009).

    CAS  Google Scholar 

  21. Mukherjee, S. et al. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    CAS  Google Scholar 

  22. Zheng, Z., Tachikawa, T. & Majima, T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc. 136, 6870–6873 (2014).

    CAS  Google Scholar 

  23. Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature Mater. 11, 1044–1050 (2012).

    CAS  Google Scholar 

  24. Jeong, D. H., Suh, J. S. & Moskovits, M. Photochemical reactions of phenazine and acridine adsorbed on silver colloid surfaces. J. Phys. Chem. B 104, 7462–7467 (2000).

    CAS  Google Scholar 

  25. Jeong, D. H., Jang, N. H., Suh, J. S. & Moskovits, M. Photodecomposition of diazanaphthalenes adsorbed on silver colloid surfaces. J. Phys. Chem. B 104, 3594–3600 (2000).

    CAS  Google Scholar 

  26. Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012).

    CAS  Google Scholar 

  27. Bohren, C. F. & Huffman, D. R. in Absorption and Scattering of Light by Small Particles 130–157 (Wiley, 1998).

    Google Scholar 

  28. Bosnick, K., Maillard, M. & Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B 107, 9964–9972 (2003).

    Google Scholar 

  29. Gunnarsson, L. et al. Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions. J. Phys. Chem. B 109, 1079–1087 (2005).

    CAS  Google Scholar 

  30. Zhang, J., Fu, Y., Chowdhury, M. H. & Lakowicz, J. R. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles. Nano Lett. 7, 2101–2107 (2007).

    CAS  Google Scholar 

  31. Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2004).

    CAS  Google Scholar 

  32. El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001).

    CAS  Google Scholar 

  33. Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    CAS  Google Scholar 

  34. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    CAS  Google Scholar 

  35. Brus, L. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008).

    CAS  Google Scholar 

  36. Zou, S. & Schatz, G. C. Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chem. Phys. Lett. 403, 62–67 (2005).

    CAS  Google Scholar 

  37. Gao, B., Arya, G. & Tao, A. R. Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nature Nanotech. 7, 433–437 (2012).

    CAS  Google Scholar 

  38. Oubre, C. & Nordlander, P. Finite-difference time-domain studies of the optical properties of nanoshell dimers. J. Phys. Chem. B 109, 10042–10051 (2005).

    CAS  Google Scholar 

  39. Grillet, N. et al. Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding. ACS Nano 5, 9450–9462 (2011).

    CAS  Google Scholar 

  40. Cobley, C. M., Skrabalak, S. E., Campbell, D. J. & Xia, Y. Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4, 171–179 (2009).

    CAS  Google Scholar 

  41. Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011).

    CAS  Google Scholar 

  42. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    CAS  Google Scholar 

  43. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).

    CAS  Google Scholar 

  44. Moskovits, M., Srnová-Šloufová, I. & Vlčková, B. Bimetallic Ag–Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 116, 10435–10446 (2002).

    CAS  Google Scholar 

  45. Nie, S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    CAS  Google Scholar 

  46. Kühn, S., Hakanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Google Scholar 

  47. Moskovits, M. Surface-enhanced Raman spectroscopy: A brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005).

    CAS  Google Scholar 

  48. Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    CAS  Google Scholar 

  49. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    CAS  Google Scholar 

  50. Larsson, E. M., Langhammer, C., Zorić, I. & Kasemo, B. Nanoplasmonic probes of catalytic reactions. Science 326, 1091–1094 (2009).

    CAS  Google Scholar 

  51. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    CAS  Google Scholar 

  52. Del Fatti, N. et al. Nonequilibrium electron dynamics in noble metals. Phys. Rev. B 61, 16956–16966 (2000).

    CAS  Google Scholar 

  53. Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

    CAS  Google Scholar 

  54. Evanoff, D. D. & Chumanov, G. Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J. Phys. Chem. B 108, 13957–13962 (2004).

    CAS  Google Scholar 

  55. Kambhampati, P., Child, C. M., Foster, M. C. & Campion, A. On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. J. Chem. Phys. 108, 5013–5026 (1998).

    CAS  Google Scholar 

  56. Evanoff, D. D. & Chumanov, G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6, 1221–1231 (2005).

    CAS  Google Scholar 

  57. Zuloaga, J., Prodan, E. & Nordlander, P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887–891 (2009).

    CAS  Google Scholar 

  58. Tan, S. F. et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496–1499 (2014).

    CAS  Google Scholar 

  59. Scholl, J. A., García-Etxarri, A., Koh, A. L. & Dionne, J. A. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13, 564–569 (2013).

    CAS  Google Scholar 

  60. Bigot, J.-Y., Merle, J.-Y., Cregut, O. & Daunois, A. Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses. Phys. Rev. Lett. 75, 4702–4705 (1995).

    CAS  Google Scholar 

  61. Voisin, C., Del Fatti, N., Christofilos, D. & Vallée, F. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J. Phys. Chem. B 105, 2264–2280 (2001).

    CAS  Google Scholar 

  62. Hertel, T., Knoesel, E., Wolf, M. & Ertl, G. Ultrafast electron dynamics at Cu(111): Response of an electron gas to optical excitation. Phys. Rev. Lett. 76, 535–538 (1996).

    CAS  Google Scholar 

  63. Tas, G. & Maris, H. J. Electron diffusion in metals studied by picosecond ultrasonics. Phys. Rev. B 49, 15046–15054 (1994).

    CAS  Google Scholar 

  64. Fann, W. S., Storz, R., Tom, H. W. K. & Bokor, J. Electron thermalization in gold. Phys. Rev. B 46, 13592–13595 (1992).

    CAS  Google Scholar 

  65. Sun, C.-K., Vallée, F., Acioli, L. H., Ippen, E. P. & Fujimoto, J. G. Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B 50, 15337–15348 (1994).

    CAS  Google Scholar 

  66. Groeneveld, R. H. M., Sprik, R. & Lagendijk, A. Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and Au. Phys. Rev. B 51, 11433–11445 (1995).

    CAS  Google Scholar 

  67. Groeneveld, R. H. M., Sprik, R. & Lagendijk, A. Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals. Phys. Rev. B 45, 5079–5082 (1992).

    CAS  Google Scholar 

  68. Baffou, G. & Quidant, R. Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat. Las. Photon. Rev. 7, 171–187 (2013).

    CAS  Google Scholar 

  69. Baffou, G. & Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898–3907 (2014).

    CAS  Google Scholar 

  70. Govorov, A. O. & Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007).

    Google Scholar 

  71. Tsen, K. T. Non-Equilibrium Dynamics of Semiconductors and Nanostructures (Taylor & Francis, 2005).

    Google Scholar 

  72. Fogler, H. S. Essentials of Chemical Reaction Engineering (Pearson Education, 2011).

    Google Scholar 

  73. Fasciani, C., Bueno Alejo, C. J., Grenier, M., Netto-Ferreira, J. C. & Scaiano, J. C. High-temperature organic reactions at room temperature using plasmon excitation: Decomposition of dicumyl peroxide. Org. Lett. 13, 204–207 (2011).

    CAS  Google Scholar 

  74. Boyd, D. A., Greengard, L., Brongersma, M., El-Naggar, M. Y. & Goodwin, D. G. Plasmon-assisted chemical vapor deposition. Nano Lett. 6, 2592–2597 (2006).

    CAS  Google Scholar 

  75. Cao, L., Barsic, D. N., Guichard, A. R. & Brongersma, M. L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7, 3523–3527 (2007).

    CAS  Google Scholar 

  76. Qiu, J. et al. Surface plasmon mediated chemical solution deposition of gold nanoparticles on a nanostructured silver surface at room temperature. J. Am. Chem. Soc. 135, 38–41 (2013).

    CAS  Google Scholar 

  77. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

    CAS  Google Scholar 

  78. El-Sayed, I. H., Huang, X. & El-Sayed, M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006).

    CAS  Google Scholar 

  79. Carpin, L. B. et al. Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res. Treat. 125, 27–34 (2011).

    CAS  Google Scholar 

  80. Loo, C. et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33–40 (2004).

    CAS  Google Scholar 

  81. Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R. & Lin, C. P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 84, 4023–4032 (2003).

    CAS  Google Scholar 

  82. Hogan, N. J. et al. Nanoparticles heat through light localization. Nano Lett. 14, 4640–4645 (2014).

    CAS  Google Scholar 

  83. Fang, Z. et al. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett. 13, 1736–1742 (2013).

    CAS  Google Scholar 

  84. Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2 . J. Am. Chem. Soc. 136, 64–67 (2014).

    CAS  Google Scholar 

  85. Zhu, H., Ke, X., Yang, X., Sarina, S. & Liu, H. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew. Chem. Int. Ed. 122, 9851–9855 (2010).

    Google Scholar 

  86. Fuku, K. et al. The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance. Angew. Chem. Int. Ed. 52, 7446–7450 (2013).

    CAS  Google Scholar 

  87. Zhang, Y. et al. Direct photocatalytic conversion of aldehydes to esters using supported gold nanoparticles under visible light irradiation at room temperature. J. Phys. Chem. C 118, 19062–19069 (2014).

    CAS  Google Scholar 

  88. Wang, F. et al. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 135, 5588–5601 (2013).

    CAS  Google Scholar 

  89. Huang, X. et al. Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy. Angew. Chem. Int. Ed. 125, 6179–6183 (2013).

    Google Scholar 

  90. Sugano, Y. et al. Supported Au–Cu bimetallic alloy nanoparticles: An aerobic oxidation catalyst with regenerable activity by visible-light irradiation. Angew. Chem. Int. Ed. 125, 5403–5407 (2013).

    Google Scholar 

  91. Xiao, Q. et al. Visible light-driven cross-coupling reactions at lower temperatures using a photocatalyst of palladium and gold alloy nanoparticles. ACS Catal. 4, 1725–1734 (2014).

    CAS  Google Scholar 

  92. Xiao, Q. et al. Efficient photocatalytic Suzuki cross-coupling reactions on Au–Pd alloy nanoparticles under visible light irradiation. Green Chem. 16, 4272–4285 (2014).

    CAS  Google Scholar 

  93. Petek, H. & Ogawa, S. Surface femtochemistry: Observation and quantum control of frustrated desorption of alkali atoms from noble metals. Annu. Rev. Phys. Chem. 53, 507–531 (2002).

    CAS  Google Scholar 

  94. Yan, J., Jacobsen, K. W. & Thygesen, K. S. First-principles study of surface plasmons on Ag(111) and H/Ag(111). Phys. Rev. B 84, 235430 (2011).

    Google Scholar 

  95. Bauer, C., Abid, J.-P., Fermin, D. & Girault, H. H. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles. J. Chem. Phys. 120, 9302–9315 (2004).

    CAS  Google Scholar 

  96. Sarina, S. et al. Viable photocatalysts under solar-spectrum irradiation: Nonplasmonic metal nanoparticles. Angew. Chem. Int. Ed. 53, 2935–2940 (2014).

    CAS  Google Scholar 

  97. Kale, M. J., Avanesian, T., Xin, H., Yan, J. & Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate–metal bonds. Nano Lett. 14, 5405–5412 (2014).

    CAS  Google Scholar 

  98. Kale, M. J., Avanesian, T. & Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4, 116–128 (2014).

    CAS  Google Scholar 

  99. Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the United States Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences (FG-02-05ER15686) and National Science Foundation (CBET-1437601, CHE-1362120 and CHE-1111770). S.L. acknowledges the Camille Dreyfus Teacher-Scholar Award from the Camille & Henry Dreyfus Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.L. wrote the manuscript. S.L. and the other authors were involved in discussions, gathering of literature and figure design.

Corresponding author

Correspondence to Suljo Linic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linic, S., Aslam, U., Boerigter, C. et al. Photochemical transformations on plasmonic metal nanoparticles. Nature Mater 14, 567–576 (2015). https://doi.org/10.1038/nmat4281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing