Abstract
The strong interaction of electromagnetic fields with plasmonic nanomaterials offers opportunities in various technologies that take advantage of photophysical processes amplified by this lightâmatter interaction. Recently, it has been shown that in addition to photophysical processes, optically excited plasmonic nanoparticles can also activate chemical transformations directly on their surfaces. This potentially offers a number of opportunities in the field of selective chemical synthesis. In this Review we summarize recent progress in the field of photochemical catalysis on plasmonic metallic nanostructures. We discuss the underlying physical mechanisms responsible for the observed chemical activity, and the issues that must be better understood to see progress in the field of plasmon-mediated photocatalysis.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Change history
20 May 2015
In the print version of this Review Article the symbols at the two ends of the x axis in Fig. 6a did not render correctly; they should have been Ð. These are correct in the online versions of the Review Article.
References
Ertl, G., Knözinger, H. & Weitkamp, J. Handbook of Heterogeneous Catalysis (Wiley, 1997).
Gadzuk, J. W. Vibrational excitation in moleculeâsurface collisions due to temporary negative molecular ion formation. J. Chem. Phys. 79, 6341â6348 (1983).
Zhou, X.-L., Zhu, X.-Y. & White, J. M. Photochemistry at adsorbate/metal interfaces. Surf. Sci. Rep. 13, 73â220 (1991).
Funk, S. et al. Desorption of CO from Ru(001) induced by near-infrared femtosecond laser pulses. J. Chem. Phys. 112, 9888â9897 (2000).
Denzler, D., Frischkorn, C., Hess, C., Wolf, M. & Ertl, G. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett. 91, 226102 (2003).
Prybyla, J. A., Heinz, T. F., Misewich, J. A., Loy, M. M. T. & Glownia, J. H. Desorption induced by femtosecond laser pulses. Phys. Rev. Lett. 64, 1537â1540 (1990).
Bartels, L. et al. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 80, 2004â2007 (1998).
Ho, W. Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons, and heating. J. Phys. Chem. 100, 13050â13060 (1996).
Prybyla, J. A., Tom, H. W. K. & Aumiller, G. D. Femtosecond time-resolved surface reaction: Desorption of Co from Cu(111) in <325 fsec. Phys. Rev. Lett. 68, 503â506 (1992).
Olsen, T., Gavnholt, J. & Schiøtz, J. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces. Phys. Rev. B 79, 035403 (2009).
Busch, D. G. & Ho, W. Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry. Phys. Rev. Lett. 77, 1338â1341 (1996).
Bonn, M. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042â1045 (1999).
Frischkorn, C. Microscopic understanding of an ultrafast photochemical surface reaction: Hads + Hads â H2, gas on Ru(0 0 1). Surf. Sci. 593, 67â78 (2005).
Anderson, P. Localized magnetic states in metals. Phys. Rev. 124, 41â53 (1961).
Muscat, J. P. & Newns, D. M. Chemisorption on metals. Prog. Surf. Sci. 9, 1â43 (1978).
Gavnholt, J., Olsen, T., Engelund, M. & Schiøtz, J. Πself-consistent field method to obtain potential energy surfaces of excited molecules on surfaces. Phys. Rev. B 78, 075441 (2008).
Wingreen, N. S. & Wilkins, J. W. Inelastic scattering in resonant tunneling. Phys. Rev. B 40, 11834â11850 (1989).
Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chem. 3, 467â472 (2011).
Qiu, J. & Wei, W. D. Surface plasmon-mediated photothermal chemistry. J. Phys. Chem. C 118, 20735â20749 (2014).
Adleman, J. R., Boyd, D. A., Goodwin, D. G. & Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417â4423 (2009).
Mukherjee, S. et al. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240â247 (2013).
Zheng, Z., Tachikawa, T. & Majima, T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc. 136, 6870â6873 (2014).
Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature Mater. 11, 1044â1050 (2012).
Jeong, D. H., Suh, J. S. & Moskovits, M. Photochemical reactions of phenazine and acridine adsorbed on silver colloid surfaces. J. Phys. Chem. B 104, 7462â7467 (2000).
Jeong, D. H., Jang, N. H., Suh, J. S. & Moskovits, M. Photodecomposition of diazanaphthalenes adsorbed on silver colloid surfaces. J. Phys. Chem. B 104, 3594â3600 (2000).
Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421â427 (2012).
Bohren, C. F. & Huffman, D. R. in Absorption and Scattering of Light by Small Particles 130â157 (Wiley, 1998).
Bosnick, K., Maillard, M. & Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B 107, 9964â9972 (2003).
Gunnarsson, L. et al. Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions. J. Phys. Chem. B 109, 1079â1087 (2005).
Zhang, J., Fu, Y., Chowdhury, M. H. & Lakowicz, J. R. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles. Nano Lett. 7, 2101â2107 (2007).
Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357â366 (2004).
El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257â264 (2001).
Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025â1102 (2005).
Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668â677 (2003).
Brus, L. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41, 1742â1749 (2008).
Zou, S. & Schatz, G. C. Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chem. Phys. Lett. 403, 62â67 (2005).
Gao, B., Arya, G. & Tao, A. R. Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nature Nanotech. 7, 433â437 (2012).
Oubre, C. & Nordlander, P. Finite-difference time-domain studies of the optical properties of nanoshell dimers. J. Phys. Chem. B 109, 10042â10051 (2005).
Grillet, N. et al. Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding. ACS Nano 5, 9450â9462 (2011).
Cobley, C. M., Skrabalak, S. E., Campbell, D. J. & Xia, Y. Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4, 171â179 (2009).
Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669â3712 (2011).
Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60â103 (2009).
Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911â921 (2011).
Moskovits, M., Srnová-Å loufová, I. & VlÄková, B. Bimetallic AgâAu nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 116, 10435â10446 (2002).
Nie, S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102â1106 (1997).
Kühn, S., Hakanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).
Moskovits, M. Surface-enhanced Raman spectroscopy: A brief retrospective. J. Raman Spectrosc. 36, 485â496 (2005).
Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578â1586 (2008).
Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205â213 (2010).
Larsson, E. M., Langhammer, C., ZoriÄ, I. & Kasemo, B. Nanoplasmonic probes of catalytic reactions. Science 326, 1091â1094 (2009).
Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193â204 (2010).
Del Fatti, N. et al. Nonequilibrium electron dynamics in noble metals. Phys. Rev. B 61, 16956â16966 (2000).
Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410â8426 (1999).
Evanoff, D. D. & Chumanov, G. Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J. Phys. Chem. B 108, 13957â13962 (2004).
Kambhampati, P., Child, C. M., Foster, M. C. & Campion, A. On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. J. Chem. Phys. 108, 5013â5026 (1998).
Evanoff, D. D. & Chumanov, G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6, 1221â1231 (2005).
Zuloaga, J., Prodan, E. & Nordlander, P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887â891 (2009).
Tan, S. F. et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496â1499 (2014).
Scholl, J. A., GarcÃa-Etxarri, A., Koh, A. L. & Dionne, J. A. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13, 564â569 (2013).
Bigot, J.-Y., Merle, J.-Y., Cregut, O. & Daunois, A. Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses. Phys. Rev. Lett. 75, 4702â4705 (1995).
Voisin, C., Del Fatti, N., Christofilos, D. & Vallée, F. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J. Phys. Chem. B 105, 2264â2280 (2001).
Hertel, T., Knoesel, E., Wolf, M. & Ertl, G. Ultrafast electron dynamics at Cu(111): Response of an electron gas to optical excitation. Phys. Rev. Lett. 76, 535â538 (1996).
Tas, G. & Maris, H. J. Electron diffusion in metals studied by picosecond ultrasonics. Phys. Rev. B 49, 15046â15054 (1994).
Fann, W. S., Storz, R., Tom, H. W. K. & Bokor, J. Electron thermalization in gold. Phys. Rev. B 46, 13592â13595 (1992).
Sun, C.-K., Vallée, F., Acioli, L. H., Ippen, E. P. & Fujimoto, J. G. Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B 50, 15337â15348 (1994).
Groeneveld, R. H. M., Sprik, R. & Lagendijk, A. Femtosecond spectroscopy of electronâelectron and electronâphonon energy relaxation in Ag and Au. Phys. Rev. B 51, 11433â11445 (1995).
Groeneveld, R. H. M., Sprik, R. & Lagendijk, A. Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals. Phys. Rev. B 45, 5079â5082 (1992).
Baffou, G. & Quidant, R. Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat. Las. Photon. Rev. 7, 171â187 (2013).
Baffou, G. & Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898â3907 (2014).
Govorov, A. O. & Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2, 30â38 (2007).
Tsen, K. T. Non-Equilibrium Dynamics of Semiconductors and Nanostructures (Taylor & Francis, 2005).
Fogler, H. S. Essentials of Chemical Reaction Engineering (Pearson Education, 2011).
Fasciani, C., Bueno Alejo, C. J., Grenier, M., Netto-Ferreira, J. C. & Scaiano, J. C. High-temperature organic reactions at room temperature using plasmon excitation: Decomposition of dicumyl peroxide. Org. Lett. 13, 204â207 (2011).
Boyd, D. A., Greengard, L., Brongersma, M., El-Naggar, M. Y. & Goodwin, D. G. Plasmon-assisted chemical vapor deposition. Nano Lett. 6, 2592â2597 (2006).
Cao, L., Barsic, D. N., Guichard, A. R. & Brongersma, M. L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7, 3523â3527 (2007).
Qiu, J. et al. Surface plasmon mediated chemical solution deposition of gold nanoparticles on a nanostructured silver surface at room temperature. J. Am. Chem. Soc. 135, 38â41 (2013).
Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549â13554 (2003).
El-Sayed, I. H., Huang, X. & El-Sayed, M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129â135 (2006).
Carpin, L. B. et al. Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res. Treat. 125, 27â34 (2011).
Loo, C. et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33â40 (2004).
Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R. & Lin, C. P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 84, 4023â4032 (2003).
Hogan, N. J. et al. Nanoparticles heat through light localization. Nano Lett. 14, 4640â4645 (2014).
Fang, Z. et al. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett. 13, 1736â1742 (2013).
Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2 . J. Am. Chem. Soc. 136, 64â67 (2014).
Zhu, H., Ke, X., Yang, X., Sarina, S. & Liu, H. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew. Chem. Int. Ed. 122, 9851â9855 (2010).
Fuku, K. et al. The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance. Angew. Chem. Int. Ed. 52, 7446â7450 (2013).
Zhang, Y. et al. Direct photocatalytic conversion of aldehydes to esters using supported gold nanoparticles under visible light irradiation at room temperature. J. Phys. Chem. C 118, 19062â19069 (2014).
Wang, F. et al. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 135, 5588â5601 (2013).
Huang, X. et al. Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy. Angew. Chem. Int. Ed. 125, 6179â6183 (2013).
Sugano, Y. et al. Supported AuâCu bimetallic alloy nanoparticles: An aerobic oxidation catalyst with regenerable activity by visible-light irradiation. Angew. Chem. Int. Ed. 125, 5403â5407 (2013).
Xiao, Q. et al. Visible light-driven cross-coupling reactions at lower temperatures using a photocatalyst of palladium and gold alloy nanoparticles. ACS Catal. 4, 1725â1734 (2014).
Xiao, Q. et al. Efficient photocatalytic Suzuki cross-coupling reactions on AuâPd alloy nanoparticles under visible light irradiation. Green Chem. 16, 4272â4285 (2014).
Petek, H. & Ogawa, S. Surface femtochemistry: Observation and quantum control of frustrated desorption of alkali atoms from noble metals. Annu. Rev. Phys. Chem. 53, 507â531 (2002).
Yan, J., Jacobsen, K. W. & Thygesen, K. S. First-principles study of surface plasmons on Ag(111) and H/Ag(111). Phys. Rev. B 84, 235430 (2011).
Bauer, C., Abid, J.-P., Fermin, D. & Girault, H. H. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles. J. Chem. Phys. 120, 9302â9315 (2004).
Sarina, S. et al. Viable photocatalysts under solar-spectrum irradiation: Nonplasmonic metal nanoparticles. Angew. Chem. Int. Ed. 53, 2935â2940 (2014).
Kale, M. J., Avanesian, T., Xin, H., Yan, J. & Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbateâmetal bonds. Nano Lett. 14, 5405â5412 (2014).
Kale, M. J., Avanesian, T. & Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4, 116â128 (2014).
Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590â1593 (2013).
Acknowledgements
We gratefully acknowledge support from the United States Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences (FG-02-05ER15686) and National Science Foundation (CBET-1437601, CHE-1362120 and CHE-1111770). S.L. acknowledges the Camille Dreyfus Teacher-Scholar Award from the Camille & Henry Dreyfus Foundation.
Author information
Authors and Affiliations
Contributions
S.L. wrote the manuscript. S.L. and the other authors were involved in discussions, gathering of literature and figure design.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Linic, S., Aslam, U., Boerigter, C. et al. Photochemical transformations on plasmonic metal nanoparticles. Nature Mater 14, 567â576 (2015). https://doi.org/10.1038/nmat4281
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat4281
This article is cited by
-
Hydrogen evolution with hot electrons on a plasmonic-molecular catalyst hybrid system
Nature Communications (2024)
-
Real-time observation of two distinctive non-thermalized hot electron dynamics at MXene/molecule interfaces
Nature Communications (2024)
-
The synthesis of benzyl alcohol: process optimization, photo-illuminated liquid phase hydrogenation, the improved green catalysts from natural zeolite
Biomass Conversion and Biorefinery (2024)
-
Carbon dots-mediated synthesis of gold nanodendrites with extended absorption into NIR-II window for in vivo photothermal therapy
Journal of Nanobiotechnology (2023)
-
Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction
Nature Communications (2023)