Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quasicrystalline nanocrystal superlattice with partial matching rules

Abstract

Expanding the library of self-assembled superstructures provides insight into the behaviour of atomic crystals and supports the development of materials with mesoscale order1,2. Here we build on recent findings of soft matter quasicrystals3,4,5,6 and report a quasicrystalline binary nanocrystal superlattice that exhibits correlations in the form of partial matching rules reducing tiling disorder. We determine a three-dimensional structure model through electron tomography7,8 and direct imaging of surface topography. The 12-fold rotational symmetry of the quasicrystal is broken in sublayers, forming a random tiling of rectangles, large triangles and small triangles with 6-fold symmetry. We analyse the geometry of the experimental tiling and discuss factors relevant for the stabilization of the quasicrystal. Our joint experimental–computational study demonstrates the power of nanocrystal superlattice engineering and further narrows the gap between the richness of crystal structures found with atoms and in soft matter assemblies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembled binary NC superlattices with quasiperiodic and periodic order.
Figure 2: Tomographic reconstruction and SEM imaging reveal the three-dimensional structure of the superlattices.
Figure 3: Three-dimensional structure model of the quasicrystal and geometric tiling analysis.
Figure 4: Stabilization and growth of the quasicrystal.

Similar content being viewed by others

References

  1. Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015).

    Article  CAS  Google Scholar 

  2. Tschierske, C. Liquid crystal engineering–new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 36, 1930–1970 (2007).

    Article  CAS  Google Scholar 

  3. Wasio, N. A. et al. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 507, 86–89 (2014).

    Article  CAS  Google Scholar 

  4. Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157–160 (2004).

    Article  CAS  Google Scholar 

  5. Takano, A. et al. A mesoscopic Archimedean tiling having a new complexity in an ABC star polymer. J. Polym. Sci. B 43, 2427–2432 (2005).

    Article  CAS  Google Scholar 

  6. Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009).

    Article  CAS  Google Scholar 

  7. Midgley, P. A. & Weyland, M. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413–431 (2003).

    Article  CAS  Google Scholar 

  8. Friedrich, H. et al. Quantitative structural analysis of binary nanocrystal superlattices by electron tomography. Nano Lett. 9, 2719–2724 (2009).

    Article  CAS  Google Scholar 

  9. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  10. Yang, Z., Wei, J., Bonville, P. & Pileni, M.-P. Beyond entropy: magnetic forces induce formation of quasicrystalline structure in binary nanocrystal superlattices. J. Am. Chem. Soc. 137, 4487–4493 (2015).

    Article  CAS  Google Scholar 

  11. Dotera, T., Oshiro, T. & Ziherl, P. Mosaic two-lengthscale quasicrystals. Nature 506, 208–211 (2014).

    Article  CAS  Google Scholar 

  12. Van Der Linden, M. N., Doye, J. P. K. & Louis, A. A. Formation of dodecagonal quasicrystals in two-dimensional systems of patchy particles. J. Chem. Phys. 136, 054904 (2012).

    Article  CAS  Google Scholar 

  13. Lim, S., Mihalkovic, M. & Henley, C. L. Matching rules from Al–Co potentials in an almost realistic model. Z. Kristallogr. 223, 843–846 (2008).

    Article  CAS  Google Scholar 

  14. Henley, C. L. in Quasicrystals: The State of the Art (eds DiVincenzo, D. P. & Steinhardt, P. J.) 429–524 (World Scientific, 1991).

    Book  Google Scholar 

  15. Nagao, K., Inuzuka, T., Nishimoto, K. & Edagawa, K. Experimental observation of quasicrystal growth. Phys. Rev. Lett. 115, 075501 (2015).

    Article  CAS  Google Scholar 

  16. Grünbaum, B. & Shephard, G. Tilings and Patterns (W. H. Freeman & Company, 1987).

    Google Scholar 

  17. Barish, R. D., Schulman, R., Rothemund, P. W. K. & Winfree, E. An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl Acad. Sci. USA 106, 6054–6059 (2009).

    Article  Google Scholar 

  18. Oxborrow, M. & Henley, C. Random square-triangle tilings: a model for twelvefold-symmetric quasicrystals. Phys. Rev. B 48, 6966–6998 (1993).

    Article  CAS  Google Scholar 

  19. Collins, R. Statistics of a simplified two-dimensional Bemal liquid. Proc. Phys. Soc. 83, 553–564 (1964).

    Article  Google Scholar 

  20. Lansac, Y., Glaser, M. & Clark, N. Discrete elastic model for two-dimensional melting. Phys. Rev. E 73, 041501 (2006).

    Article  CAS  Google Scholar 

  21. Joseph, D. & Elser, V. A model of quasicrystal growth. Phys. Rev. Lett. 79, 1066–1069 (1997).

    Article  CAS  Google Scholar 

  22. Roth, J. W. Restricted square-triangle tilings. Z. Kristallogr. 223, 761–764 (2008).

    Article  CAS  Google Scholar 

  23. Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466, 474–477 (2010).

    Article  CAS  Google Scholar 

  24. Lee, S., Bluemle, M. J. & Bates, F. S. Discovery of a Frank-Kasper sigma phase in sphere-forming block copolymer melts. Science 330, 349–353 (2010).

    Article  CAS  Google Scholar 

  25. Huang, M. et al. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 348, 424–428 (2015).

    Article  CAS  Google Scholar 

  26. Ishimasa, T., Iwami, S., Sakaguchi, N., Oota, R. & Mihalkovič, M. Phason space analysis and structure modelling of 100 Å-scale dodecagonal quasicrystal in Mn-based alloy. Philos. Mag. 95, 3745–3767 (2015).

    Article  CAS  Google Scholar 

  27. Engel, M., Damasceno, P. F., Phillips, C. L. & Glotzer, S. C. Computational self-assembly of a one-component icosahedral quasicrystal. Nat. Mater. 14, 109–116 (2015).

    Article  CAS  Google Scholar 

  28. Korkidi, L., Barkan, K. & Lifshitz, R. Aperiodic Crystals 117–124 (Springer, 2013).

    Google Scholar 

  29. Hopkins, A. B., Stillinger, F. H. & Torquato, S. Densest binary sphere packings. Phys. Rev. E 85, 021130 (2012).

    Article  CAS  Google Scholar 

  30. Ye, X. et al. Shape alloys of nanorods and nanospheres from self-assembly. Nano Lett. 13, 4980–4988 (2013).

    Article  CAS  Google Scholar 

  31. Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004).

    Article  CAS  Google Scholar 

  32. Chen, J. et al. Bistable magnetoresistance switching in exchange-coupled CoFe2O4-Fe3O4 binary nanocrystal superlattices by self-assembly and thermal annealing. ACS Nano 7, 1478–1486 (2013).

    Article  CAS  Google Scholar 

  33. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  34. Ye, X., Chen, J. & Murray, C. B. Polymorphism in self-assembled AB6 binary nanocrystal superlattices. J. Am. Chem. Soc. 133, 2613–2620 (2011).

    Article  CAS  Google Scholar 

  35. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  Google Scholar 

  36. Mastronarde, D. N. Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120, 343–352 (1997).

    Article  CAS  Google Scholar 

  37. Shah, A. A., Schultz, B., Kohlstedt, K. L., Glotzer, S. C. & Solomon, M. J. Synthesis, assembly, and image analysis of spheroidal patchy particles. Langmuir 29, 4688–4696 (2013).

    Article  CAS  Google Scholar 

  38. Schultz, B. A. Role of Shape in the Self-Assembly of Anisotropic Colloids PhD thesis, Univ. Michigan (2015).

  39. Steurer, W. & Deloudi, S. Crystallography of Quasicrystals: Concepts, Methods and Structures (Springer Series in Materials Science, 2009).

    Google Scholar 

  40. Paredes, R., Aragón, J. & Barrio, R. Nonperiodic hexagonal square-triangle tilings. Phys. Rev. B 58, 11990–11995 (1998).

    Article  CAS  Google Scholar 

  41. Chen, E. R., Klotsa, D., Engel, M., Damasceno, P. F. & Glotzer, S. C. Complexity in surfaces of densest packings for families of polyhedra. Phys. Rev. X 4, 011024 (2014).

    Google Scholar 

  42. Jacobs, S. Game Programming gems 7. Game Program. gems seven (Charles River Media/Course Technology, 2008).

    Google Scholar 

  43. Anderson, J. A., Eric Irrgang, M. & Glotzer, S. C. Scalable Metropolis Monte Carlo for simulation of hard shapes. Comput. Phys. Commun. 204, 21–30 (2016).

    Article  CAS  Google Scholar 

  44. Anderson, J. A., Lorenz, C. D. & Travesset, A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227, 5342–5359 (2008).

    Article  Google Scholar 

  45. Glaser, J. et al. Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput. Phys. Commun. 192, 97–107 (2015).

    Article  CAS  Google Scholar 

  46. Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X.Y. and C.B.M. were supported by the US Department of Energy Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award No. DE-SC0002158. J.C. and C.B.M. received support from NSF MRSEC under Award No. DMR-1120901. M.E.I., M.E. and S.C.G. were supported by the US Army Research Office under Award No. W911NF-10-1-0518 and by the Assistant Secretary of Defense for Research and Engineering, US Department of Defense under Award No. N00244-09-1-0062. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the DOD/ASD(R&E). S.C.G. was partially supported by a Simons Investigator award from the Simons Foundation. A.D. was supported by the National Basic Research Program of China (2014CB845602) and the Natural National Science Foundation of China (21373052). We thank B. Schultz for providing image analysis code. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF grant number ACI-1053575, XSEDE award DMR 140129. Additional computational resources and services were supported by Advanced Research Computing at the University of Michigan, Ann Arbor.

Author information

Authors and Affiliations

Authors

Contributions

X.Y., J.C. and C.B.M. conceived and designed the experiments. X.Y. and J.C. carried out nanocrystal syntheses and self-assembly, and carried out TEM imaging and electron tomography reconstruction. X.Y., J.C. and A.D. performed SEM imaging. M.E.I., M.E. and S.C.G. planned and discussed theoretical analysis and computer simulations. M.E.I. performed analysis and simulations. M.E., S.C.G. and C.B.M. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Sharon C. Glotzer or Christopher B. Murray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 17703 kb)

Supplementary Information

Supplementary Information (MPG 2190 kb)

Supplementary Information

Supplementary Information (MPG 2441 kb)

Supplementary Information

Supplementary Information (MPG 1719 kb)

Supplementary Information

Supplementary Information (MPG 1749 kb)

Supplementary Information

Supplementary Information (MPG 1637 kb)

Supplementary Information

Supplementary Information (MPG 557 kb)

Supplementary Information

Supplementary Information (MPG 4445 kb)

Supplementary Movie 1

Supplementary Movie 1 (MP4 14571 kb)

Supplementary Information

Supplementary Information (HTML 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Chen, J., Eric Irrgang, M. et al. Quasicrystalline nanocrystal superlattice with partial matching rules. Nature Mater 16, 214–219 (2017). https://doi.org/10.1038/nmat4759

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4759

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing