Abstract
Expanding the library of self-assembled superstructures provides insight into the behaviour of atomic crystals and supports the development of materials with mesoscale order1,2. Here we build on recent findings of soft matter quasicrystals3,4,5,6 and report a quasicrystalline binary nanocrystal superlattice that exhibits correlations in the form of partial matching rules reducing tiling disorder. We determine a three-dimensional structure model through electron tomography7,8 and direct imaging of surface topography. The 12-fold rotational symmetry of the quasicrystal is broken in sublayers, forming a random tiling of rectangles, large triangles and small triangles with 6-fold symmetry. We analyse the geometry of the experimental tiling and discuss factors relevant for the stabilization of the quasicrystal. Our joint experimentalâcomputational study demonstrates the power of nanocrystal superlattice engineering and further narrows the gap between the richness of crystal structures found with atoms and in soft matter assemblies.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012â1057 (2015).
Tschierske, C. Liquid crystal engineeringânew complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 36, 1930â1970 (2007).
Wasio, N. A. et al. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 507, 86â89 (2014).
Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157â160 (2004).
Takano, A. et al. A mesoscopic Archimedean tiling having a new complexity in an ABC star polymer. J. Polym. Sci. B 43, 2427â2432 (2005).
Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964â967 (2009).
Midgley, P. A. & Weyland, M. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413â431 (2003).
Friedrich, H. et al. Quantitative structural analysis of binary nanocrystal superlattices by electron tomography. Nano Lett. 9, 2719â2724 (2009).
Shevchenko, E. V., Talapin, D. V., Kotov, N. A., OâBrien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55â59 (2006).
Yang, Z., Wei, J., Bonville, P. & Pileni, M.-P. Beyond entropy: magnetic forces induce formation of quasicrystalline structure in binary nanocrystal superlattices. J. Am. Chem. Soc. 137, 4487â4493 (2015).
Dotera, T., Oshiro, T. & Ziherl, P. Mosaic two-lengthscale quasicrystals. Nature 506, 208â211 (2014).
Van Der Linden, M. N., Doye, J. P. K. & Louis, A. A. Formation of dodecagonal quasicrystals in two-dimensional systems of patchy particles. J. Chem. Phys. 136, 054904 (2012).
Lim, S., Mihalkovic, M. & Henley, C. L. Matching rules from AlâCo potentials in an almost realistic model. Z. Kristallogr. 223, 843â846 (2008).
Henley, C. L. in Quasicrystals: The State of the Art (eds DiVincenzo, D. P. & Steinhardt, P. J.) 429â524 (World Scientific, 1991).
Nagao, K., Inuzuka, T., Nishimoto, K. & Edagawa, K. Experimental observation of quasicrystal growth. Phys. Rev. Lett. 115, 075501 (2015).
Grünbaum, B. & Shephard, G. Tilings and Patterns (W. H. Freeman & Company, 1987).
Barish, R. D., Schulman, R., Rothemund, P. W. K. & Winfree, E. An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl Acad. Sci. USA 106, 6054â6059 (2009).
Oxborrow, M. & Henley, C. Random square-triangle tilings: a model for twelvefold-symmetric quasicrystals. Phys. Rev. B 48, 6966â6998 (1993).
Collins, R. Statistics of a simplified two-dimensional Bemal liquid. Proc. Phys. Soc. 83, 553â564 (1964).
Lansac, Y., Glaser, M. & Clark, N. Discrete elastic model for two-dimensional melting. Phys. Rev. E 73, 041501 (2006).
Joseph, D. & Elser, V. A model of quasicrystal growth. Phys. Rev. Lett. 79, 1066â1069 (1997).
Roth, J. W. Restricted square-triangle tilings. Z. Kristallogr. 223, 761â764 (2008).
Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquidâair interface. Nature 466, 474â477 (2010).
Lee, S., Bluemle, M. J. & Bates, F. S. Discovery of a Frank-Kasper sigma phase in sphere-forming block copolymer melts. Science 330, 349â353 (2010).
Huang, M. et al. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 348, 424â428 (2015).
Ishimasa, T., Iwami, S., Sakaguchi, N., Oota, R. & MihalkoviÄ, M. Phason space analysis and structure modelling of 100âà -scale dodecagonal quasicrystal in Mn-based alloy. Philos. Mag. 95, 3745â3767 (2015).
Engel, M., Damasceno, P. F., Phillips, C. L. & Glotzer, S. C. Computational self-assembly of a one-component icosahedral quasicrystal. Nat. Mater. 14, 109â116 (2015).
Korkidi, L., Barkan, K. & Lifshitz, R. Aperiodic Crystals 117â124 (Springer, 2013).
Hopkins, A. B., Stillinger, F. H. & Torquato, S. Densest binary sphere packings. Phys. Rev. E 85, 021130 (2012).
Ye, X. et al. Shape alloys of nanorods and nanospheres from self-assembly. Nano Lett. 13, 4980â4988 (2013).
Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891â895 (2004).
Chen, J. et al. Bistable magnetoresistance switching in exchange-coupled CoFe2O4-Fe3O4 binary nanocrystal superlattices by self-assembly and thermal annealing. ACS Nano 7, 1478â1486 (2013).
Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989â1992 (2000).
Ye, X., Chen, J. & Murray, C. B. Polymorphism in self-assembled AB6 binary nanocrystal superlattices. J. Am. Chem. Soc. 133, 2613â2620 (2011).
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71â76 (1996).
Mastronarde, D. N. Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120, 343â352 (1997).
Shah, A. A., Schultz, B., Kohlstedt, K. L., Glotzer, S. C. & Solomon, M. J. Synthesis, assembly, and image analysis of spheroidal patchy particles. Langmuir 29, 4688â4696 (2013).
Schultz, B. A. Role of Shape in the Self-Assembly of Anisotropic Colloids PhD thesis, Univ. Michigan (2015).
Steurer, W. & Deloudi, S. Crystallography of Quasicrystals: Concepts, Methods and Structures (Springer Series in Materials Science, 2009).
Paredes, R., Aragón, J. & Barrio, R. Nonperiodic hexagonal square-triangle tilings. Phys. Rev. B 58, 11990â11995 (1998).
Chen, E. R., Klotsa, D., Engel, M., Damasceno, P. F. & Glotzer, S. C. Complexity in surfaces of densest packings for families of polyhedra. Phys. Rev. X 4, 011024 (2014).
Jacobs, S. Game Programming gems 7. Game Program. gems seven (Charles River Media/Course Technology, 2008).
Anderson, J. A., Eric Irrgang, M. & Glotzer, S. C. Scalable Metropolis Monte Carlo for simulation of hard shapes. Comput. Phys. Commun. 204, 21â30 (2016).
Anderson, J. A., Lorenz, C. D. & Travesset, A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227, 5342â5359 (2008).
Glaser, J. et al. Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput. Phys. Commun. 192, 97â107 (2015).
Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62â74 (2014).
Acknowledgements
X.Y. and C.B.M. were supported by the US Department of Energy Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award No. DE-SC0002158. J.C. and C.B.M. received support from NSF MRSEC under Award No. DMR-1120901. M.E.I., M.E. and S.C.G. were supported by the US Army Research Office under Award No. W911NF-10-1-0518 and by the Assistant Secretary of Defense for Research and Engineering, US Department of Defense under Award No. N00244-09-1-0062. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the DOD/ASD(R&E). S.C.G. was partially supported by a Simons Investigator award from the Simons Foundation. A.D. was supported by the National Basic Research Program of China (2014CB845602) and the Natural National Science Foundation of China (21373052). We thank B. Schultz for providing image analysis code. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF grant number ACI-1053575, XSEDE award DMR 140129. Additional computational resources and services were supported by Advanced Research Computing at the University of Michigan, Ann Arbor.
Author information
Authors and Affiliations
Contributions
X.Y., J.C. and C.B.M. conceived and designed the experiments. X.Y. and J.C. carried out nanocrystal syntheses and self-assembly, and carried out TEM imaging and electron tomography reconstruction. X.Y., J.C. and A.D. performed SEM imaging. M.E.I., M.E. and S.C.G. planned and discussed theoretical analysis and computer simulations. M.E.I. performed analysis and simulations. M.E., S.C.G. and C.B.M. supervised the project. All authors discussed the results and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 17703 kb)
Supplementary Information
Supplementary Information (MPG 2190 kb)
Supplementary Information
Supplementary Information (MPG 2441 kb)
Supplementary Information
Supplementary Information (MPG 1719 kb)
Supplementary Information
Supplementary Information (MPG 1749 kb)
Supplementary Information
Supplementary Information (MPG 1637 kb)
Supplementary Information
Supplementary Information (MPG 557 kb)
Supplementary Information
Supplementary Information (MPG 4445 kb)
Supplementary Movie 1
Supplementary Movie 1 (MP4 14571 kb)
Supplementary Information
Supplementary Information (HTML 16 kb)
Rights and permissions
About this article
Cite this article
Ye, X., Chen, J., Eric Irrgang, M. et al. Quasicrystalline nanocrystal superlattice with partial matching rules. Nature Mater 16, 214â219 (2017). https://doi.org/10.1038/nmat4759
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat4759
This article is cited by
-
Unravelling crystal growth of nanoparticles
Nature Nanotechnology (2023)
-
Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals
Nature Communications (2022)
-
Quantitative 3D real-space analysis of Laves phase supraparticles
Nature Communications (2021)
-
Kinetic pathways of crystallization at the nanoscale
Nature Materials (2020)
-
Structural order in plasmonic superlattices
Nature Communications (2020)